Skip to main content
Log in

Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aluminum lithium alloy was rolled at two different temperatures, viz., 28 °C (301 K) and −196 °C (77 K). The thickness of the alloy was reduced by 75 % from its initial thickness (6 mm) in each condition. X-ray diffraction analysis was carried out on all samples to determine the grain size and dislocation density. The cryorolled sample exhibited a finer grain size with higher dislocation density, which was evidenced from micrographs obtained with transmission electron microscopy. Electron backscattered diffraction images revealed the presence of bimodal grain distribution in the rolled samples, in which the cryorolled sample exhibited a larger amount of ultrafine grains. Both tensile and hardness tests were performed on rolled samples. Cryorolled samples showed superior properties when comparing with room temperature rolled sample. Scanning electron microscopic images of fractured samples were used to analyze the void coalescence behavior. The various void coalescence parameters like void size, void area, length to width ratio of void, and ligament thickness were analyzed, and these results were correlated with microstructure, mechanical properties, crystallite size, and dislocation density in all conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang ZC, Prangnell PB (2014) Mater Des 57:351–359

    Article  Google Scholar 

  2. Rioja RJ (1998) Mater Sci Eng A 257:100–107

    Article  Google Scholar 

  3. Wang ZC, Prangnell PB (2002) Mater Sci Eng A 328:87–97

    Article  Google Scholar 

  4. Gokhale AA, Singh V (2005) J Mater Process Technol 159:369–376

    Article  Google Scholar 

  5. Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP (2012) Eng Fail Anal 22:166–178

    Article  Google Scholar 

  6. Estrin Y, Vinogradov A (2013) Acta Mater 61:782–817

    Article  Google Scholar 

  7. Sabirov I, Murashkin MY, Valiev RZ (2013) Mater Sci Eng A 560:1–24

    Article  Google Scholar 

  8. Matsunoshita H, Edalati K, Furui M, Horita Z (2015) Mater Sci Eng A 640:443–448

    Article  Google Scholar 

  9. Panigrahi SK, Jayaganthan R (2010) Metall Mater Trans A 41:2675–2690

    Article  Google Scholar 

  10. Huang YC, Yan XY, Qiu T (2016) Trans Nonferr Metals Soc China 26:12–18

    Article  Google Scholar 

  11. Yu H, Tieu K, Lu C (2014) Procedia Eng 81:96–101

    Article  Google Scholar 

  12. Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912–915

    Article  Google Scholar 

  13. Panigrahi SK, Jayaganthan R (2011) Mater Des 32:2172–2180

    Article  Google Scholar 

  14. Kumar V, Singh IV, Mishra BK, Jayaganthan R (2014) Procedia Mater Sci 6:1919–1926

    Article  Google Scholar 

  15. Jayaganthan R, Brokmeier HG, Schwebke B, Panigrahi SK (2010) J Alloy Compd 496:183–188

    Article  Google Scholar 

  16. Benzerga AA, Bessson J, Pianesau A (1999) J Eng Mater Technol 121:221–229

    Article  Google Scholar 

  17. Ravindran R, Manonmani K, Narayanasamy R (2009) Mater Sci Eng A 507:252–267

    Article  Google Scholar 

  18. Velmanirajan K, Anuradha K, Syed Abu Thaheer A, Narayanasamy R, Madhavan R, Suwas S (2014) Arch Civ Mech Eng 14:398–416

    Article  Google Scholar 

  19. Naga Krishna N, Akash AK, Sivaprasad K, Narayanasamy R (2010) Mater Des 31:3578–3584

    Article  Google Scholar 

  20. Chandra Sekhar K, Narayanasamy R, Venkateswarlu K (2014) Mater Des 57:351–359

    Article  Google Scholar 

  21. Krishna KSVBR, Chandra Sekhar K, Tejas R, Naga Krishna N, Sivaprasad K, Narayanasamy R, Venkateswarlu K (2015) Mater Des 67:107–117

    Article  Google Scholar 

  22. Williamson GK, Hall WH (1953) Acta Metall 1:22–31

    Article  Google Scholar 

  23. Naga Krishna N, Tejas R, Sivaprasad K, Venkateswarlu K (2013) Mater Des 52:785–790

    Article  Google Scholar 

  24. Pramanshu T, Anup Kumar P, Rita M, Jayaganthan R, Kantesh B (2015) Miner Met Mater Soc 67:726–732

    Article  Google Scholar 

  25. Ungar T (2004) Scr Mater 51:777–781

    Article  Google Scholar 

  26. Naga Krishna N, Ashfaq M, Susila P, Sivaprasad K, Venkateswarlu K (2015) Mater Charact 107:302–308

    Article  Google Scholar 

  27. Zhang X, Yang X, Chen W, Qin J, Jiaping F (2015) Mater Charact 106:100–107

    Article  Google Scholar 

  28. Chandra Sekhar K, Narayanasamy R, Velmanirajan K (2014) Mater Des 53:1064–1070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sivaprasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, K.S.V.B.R., Vigneshwaran, S., Sekhar, K.C. et al. Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy. Int J Adv Manuf Technol 93, 253–259 (2017). https://doi.org/10.1007/s00170-016-8863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8863-2

Keywords

Navigation