Effect of postharvest dehydration on the microstructure and anthocyanin content of grapes

Abstract

Postharvest dehydration temperature is important for the quality of grapes, especially the content of anthocyanin. Therefore, this article investigated the changes in the contents of total phenolic and anthocyanin compounds as well as the tissue microstructure of grapes. Furthermore, the correlation between the drying temperature and the total phenolic and anthocyanin compounds was analyzed. The results showed that the total phenol content was 1188.25 ± 37.32 mg/kg in the control group and 998.13 ± 52.28 mg/kg and 886.00 ± 12.33 mg/kg in the groups treated at 25 °C and 45 °C, respectively, with 60% mass loss. The microstructure of the grape peel showed shrinkage, rupture, and collapse with the disappearance of fine structures during dehydration at different temperatures. The drying temperature was positively correlated with the dehydration rate (p < 0.01, sig = 0.781), which was negatively correlated with the total phenolic content (p < 0.01, sig =  − 0.985). Overall, the results provide a reliable scientific basis for the extraction and utilization of anthocyanins in grapes.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Antelmi G, Bellincontro A, Mencarelli F (2010) How dehydration temperature and weight loss affect the biosynthesis of nutritional compounds in irrigated aleatico grapes. Acta Horticulturae 877:693–698. https://doi.org/10.17660/ActaHortic.2010.877.91

  2. Bengtson C, Larsson S, Liljenberg C (1978) Effect of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol Plant 44:319–324. https://doi.org/10.1111/j.1399-3054.1978.tb01630.x

    CAS  Article  Google Scholar 

  3. Blanke M, Prung R, Baker E (1999) Structure and elemental compositon of grapes berry stomata. J Plant Physiolol 154:477–481. https://doi.org/10.1016/S0176-1617(99)80286-7

    CAS  Article  Google Scholar 

  4. Bonada M, Sadras V, Fuentes S (2013a) Effect of elevated temperature on the onset and rate of mesocarp cell death in berries of shiraz and chardonnay and its relationship with berry shrivel. Aust J Grape Wine R 19:87–94. https://doi.org/10.1111/ajgw.12010

    Article  Google Scholar 

  5. Bonada M, Sadras V, Moran M, Fuentes S (2013b) Elevated temperature and water stress accelerate mesocarp cell death and shrivelling and decouple sensory traits in shiraz berries. Irrig Sci 31:1317–1331. https://doi.org/10.1007/s00271-013-0407-z

    Article  Google Scholar 

  6. Camire M, Chaovanalikit A, Dougherty M, Briggs J (2002) Blueberry and grapes anthocyanins as breakfast cereal colorants. J Food Sci 67:438–441. https://doi.org/10.1111/j.1365-2621.2002.tb11425.x

    CAS  Article  Google Scholar 

  7. Castellarin S, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapesvine under seasonal water deficit. Plant Cell Environ 30:1381–1399. https://doi.org/10.1111/j.1365-3040.2007.01716.x

    CAS  Article  PubMed  Google Scholar 

  8. Cheynier V, Souquet J, Kontek A, Moutounet M (1994) Anthocyanin degradation in oxidising grapes musts. J Sci Food Agric 66:283–288. https://doi.org/10.1002/jsfa.2740660304

    CAS  Article  Google Scholar 

  9. Choueiri L, Chedea V, Calokerinos A, Kefalas P (2012) Antioxidant pro-oxidant properties of model phenolic compounds. Part II: studies on mixtures of polyphenols at different molar ratios by chemiluminescence and LC–MS. Food Chem 133:1039–1044. https://doi.org/10.1016/j.foodchem.2012.01.057

    CAS  Article  Google Scholar 

  10. Considine J, Knox R (1979) Development and histochemistry of the cells cell walls and cuticle of the dermal system of fruit of the grapes vitis vinifera L.. Protoplasma 99:347–365. https://doi.org/10.1007/BF01275807

    Article  Google Scholar 

  11. Esmaiili M, Sotudeh-Gharebagh R, Cronin K, Rezazadeh G (2007) grapes drying: a review. Food Rev Int 23:1317–1331. https://doi.org/10.1080/87559120701418335

    Article  Google Scholar 

  12. Figueiredo-González M, Cancho-Grande B, Simal-Gandara J (2013) Effects on colour and phenolic composition of sugar concentration processes in dried-on- or dried-off-vine grapes and their aged or not natural sweet wines. Trends Food Sci Technol 31:36–54. https://doi.org/10.1016/j.tifs.2013.02.004

    CAS  Article  Google Scholar 

  13. Gonzalez M, Barrett D (2010) Thermal high pressure and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J Food Sci 75:R121–R130. https://doi.org/10.1111/j.1750-3841.2010.01763.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Neves G, Gómez-Cordovés C, Barreiro L (2001) Anthocyanic composition of tannat cabernet sauvignon and merlot young red wines from uruguay. J Wine Res 12:125–133. https://doi.org/10.1080/09571260120095030

    Article  Google Scholar 

  15. Hardie W, O’Brien T, Jaudzems V (2008) Morphology anatomy and development of the pericarp after anthesis in grapes vitis vinifera. Aust J Grape Wine Res 2:97–142. https://doi.org/10.1111/j.1755-0238.1996.tb00101.x

    Article  Google Scholar 

  16. Hattersley K, Hein L, Fuller M (2013) Lipid composition of membrane rafts isolated with and without detergent from the spleen of a mouse model of gaucher disease. Biochem Biophys Res Commun 442:62–67. https://doi.org/10.1016/j.bbrc.2013.11.009

    CAS  Article  PubMed  Google Scholar 

  17. Holton T, Cornish E (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083. https://doi.org/10.2307/3870058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Iland P, Cynkar W, Francis I, Williams P, Coombe B (1996) Optimisation of methods for the determination of total and red-free glycosyl glucose in black grapes berries of vitis vinifera. Aust J Grape Wine Res 2:171–178. https://doi.org/10.1111/j.1755-0238.1996.tb00105.x

    CAS  Article  Google Scholar 

  19. Javanmardi J, Stushnoff C, Locke E, Vivanco J (2003) Antioxidant activity and total phenolic content of iranian ocimum accessions. Food Chem 83:547–550. https://doi.org/10.1016/S0308-8146(03)00151-1

    CAS  Article  Google Scholar 

  20. Kliewer WM (1977) Influence of temperature solar radiation and nitrogen on coloration and composition of emperor grapes. Am J Enol Viticult 28:96–103. https://doi.org/10.1016/S0065-2911(08)60050-8

    CAS  Article  Google Scholar 

  21. Larrauri J, Rupérez P, Saura-Calixto F (1997) Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grapes pomace peels. J Agric Food Chem 45:1390–1393. https://doi.org/10.1021/jf960282f

    CAS  Article  Google Scholar 

  22. Li S, He F, Zhu B, Xing R, Reeves M, Duan C (2016) A systematic analysis strategy for accurate detection of anthocyanin pigments in red wines: accurate detection of anthocyanin pigments in red wines. Rapid Commun Mass Spectrom 30:1619–1626. https://doi.org/10.1002/rcm.7584

    CAS  Article  PubMed  Google Scholar 

  23. Liu J, Meng J, Guo Z, Geng W, Qiao L, Zhang A, Zhang Z, Fang Y (2012a) Effect of enlargement treatment on phenolic content and antioxidant activities of red globe grapes. Food Sci 33:7–12

    Google Scholar 

  24. Liu X, Zhang S, He H, Xu H (2012b) Drying characteristics and its effects on quality of jujube treated by combined microwave-hot-air drying. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 28:280–286. https://doi.org/10.3969/j.issn.1002-6819.2012.24.038

    Article  Google Scholar 

  25. López J, Shun Ah-Hen K, Vega-Gálvez A, Morales A, García-Segovia P, Uribe E (2017) Effects of drying methods on quality attributes of murta (ugni molinae turcz) berries: bioactivity nutritional aspects texture profile microstructure and functional properties. J Food Process Eng 40:e12511. https://doi.org/10.1111/jfpe.12511

    CAS  Article  Google Scholar 

  26. Marquez A, Serratosa M, Varo M, Merida J (2014) Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of tempranillo grapes. J Agric Food Chem 62:1–15. https://doi.org/10.1021/jf502235b

    CAS  Article  Google Scholar 

  27. Mateus N, De Pascual-Teresa S, Rivas-Gonzalo J, Santos-Buelga C, Freitas V (2002) Structural diversity of anthocyanin-derived pigments detected in port wines. Food Chem 76:335–342

    CAS  Article  Google Scholar 

  28. Mazza G (1995) Anthocyanins in grapes and grapes products. Crit Rev Food Sci 35:341–371. https://doi.org/10.1080/10408399509527704

    CAS  Article  Google Scholar 

  29. Moreno J, Cerpa-Calderón F, Cohen S, Fang Y, Qian M, Kennedy J (2008) Effect of postharvest dehydration on the composition of (Vitis vinifera L.) pinot noir grapes and wine. Food Chem 109:755–762. https://doi.org/10.1016/j.foodchem.2008.01.035

    CAS  Article  PubMed  Google Scholar 

  30. Nieto A, Salvatori D, Castro M, Alzamora S (2004) Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage porosity density and microscopic features. J Food Eng 61:269–278. https://doi.org/10.1016/S0260-8774(03)00108-0

    Article  Google Scholar 

  31. Oliveira J, Santos-Buelga C, Silva A, Freitas V, Mateus N (2006) Chromatic and structural features of blue anthocyanin-derived pigments present in port wine. Anal Chim Acta 563:2–9. https://doi.org/10.1016/j.aca.2005.11.027

    CAS  Article  Google Scholar 

  32. Petrozziello M, Torchio F, Piano F, Giacosa S, Ugliano M, Bosso A, Rolle L (2018) Impact of increasing levels of oxygen consumption on the evolution of color phenolicand volatile compounds of nebbiolo wines. Front Chem 6:1–15. https://doi.org/10.3389/fchem.2018.00137

    CAS  Article  Google Scholar 

  33. Possingham J, Chambers T, Radler F, Grncarevic M (1967) Cuticular transpiration and wax structure and composition of leaves and fruit of vitis vinifera. Aust J Biol Sci 20:1149–1154. https://doi.org/10.1071/BI9671149

    Article  Google Scholar 

  34. Pretto P, Bordignon L (2017) Impact of grapes dehydration process on the phenolic composition of wines during bottle ageing. J Food Biochem 41:e12417. https://doi.org/10.1111/jfbc.12417

    CAS  Article  Google Scholar 

  35. Pretto P, Gomes T, Gois J, Borges D, Bordignon L (2013) Effect of dehydration process on mineral content phenolic compounds and antioxidant activity of cabernet sauvignon and merlot grapes. Food Res Int 54:1343–1350. https://doi.org/10.1016/j.foodres.2013.10.016

    CAS  Article  Google Scholar 

  36. Rodriguez K, Ah H, Vega G, López J, Quispe I, Lemus M, Ranilla L (2013) Changes in bioactive compounds and antioxidant activity during convective drying of murta (Ugni molinae T.) berries. Int J Food Sci Technol 49:990–1000. https://doi.org/10.1111/ijfs.12392

    CAS  Article  Google Scholar 

  37. Rogiers S, Jm H, Jaudzems V, White R, Keller M (2004) grapes berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Am J Enol Viticult 55:121–127. https://doi.org/10.1021/bk-2004-0887.ch012

    CAS  Article  Google Scholar 

  38. Ruiz M, Zea L, Moyano L, Medina M (2010) Aroma active compounds during the drying of grapes cv. Pedro ximenez destined to the production of sweet sherry wine. Eur Food Res Technol 230:429–435. https://doi.org/10.1007/s00217-009-1183-0

    CAS  Article  Google Scholar 

  39. Samoticha J, Wojdyło A, Lech K (2015) The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT 66:484–489. https://doi.org/10.1016/j.lwt.2015.10.073

    CAS  Article  Google Scholar 

  40. Sarni M, Fulcrand H, Souillol V, Souquet J, Cheynier V (1995) Mechanisms of anthocyanin degradation in grapes must-like model solutions. J Sci Food Agric 69:385–391. https://doi.org/10.1002/jsfa.2740690317

    CAS  Article  Google Scholar 

  41. Steyn W, Wand S, Holcroft D, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 55:349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x

    Article  Google Scholar 

  42. Torchio F, Delia S, Lin L, Gerbi V, Giacosa S, Segade S, Pop N, Lambri M, Rolle L (2016) Influence of different withering conditions on phenolic composition of avanà chatus and nebbiolo grapes for the production of ‘Reinforced’ wines. Food Chem 194:247–256. https://doi.org/10.1016/j.foodchem.2015.08.009

    CAS  Article  PubMed  Google Scholar 

  43. Villiers A, Vanhoenacker G, Majek P, Sandra P (2004) Determination of anthocyanins in wine by direct injection liquid chromatography–diode array detection–mass spectrometry and classification of wines using discriminant analysis. J Chromatogr A 1054:195–204. https://doi.org/10.1016/j.chroma.2004.07.087

    CAS  Article  PubMed  Google Scholar 

  44. Wojdyło A, Figiel A, Oszmiański J (2009) Effect of drying methods with the application of vacuum microwaves on the bioactive compounds color and antioxidant activity of strawberry fruits. J Agric Food Chem 57:1337–1343. https://doi.org/10.1021/jf802507j

    CAS  Article  PubMed  Google Scholar 

  45. Zänglein M, Schwarz M, Winterhalter P (2007) Pyranoanthocyanins an overview on structures occurrence and pathways of formation. Trends Food Sci Technol 18:526–534. https://doi.org/10.1016/j.tifs.2007.04.014

    CAS  Article  Google Scholar 

  46. Zoccatelli G, Zenoni S, Savoi S, Dal Santo S, Tononi P, Cin A, Guantieri V, Pezzotti M, Tornielli G (2013) Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapesvine cultivars. Aus J Grape Wine Res 19:171–179. https://doi.org/10.1111/ajgw.12014

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funds for this study were provided by the Research Cooperation Fund Project of China Agricultural University and Xinjiang Agricultural University (Joint Fund of China Agricultural University and Xinjiang Agricultural University, Grant Number: 2017TC010).

Author information

Affiliations

Authors

Contributions

The research was conceptualized and designed by ZWC, FZS, and BYJ, who also participated in acquiring data and drafting the manuscript. The data analysis and interpretation were done by Aygul Alim. Statistical analysis was carried out by XN and ZJM. The study was designed and statistical analysis was carried out by DZR. The final manuscript was read and approved by all authors.

Corresponding authors

Correspondence to Yujia Bai or Zuoshan Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ali Sarkhosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Alim, A., Bai, Y. et al. Effect of postharvest dehydration on the microstructure and anthocyanin content of grapes. Hortic. Environ. Biotechnol. (2021). https://doi.org/10.1007/s13580-020-00331-w

Download citation

Keywords

  • Anthocyanin
  • Correlation
  • Grapes
  • Microstructure
  • Postharvest dehydration