Skip to main content
Log in

Comprehensive analysis of CCCH zinc-finger-type transcription factors in the Brassica rapa genome

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The CCCH-type zinc finger proteins are characterized by their signature motif of three cysteine and one histidine residues. These proteins are RNA binding proteins that function in plant growth, developmental processes, and responses to various environmental stress conditions. In this study, a comprehensive analysis using computational methods allowed the identification of 63 functionally important CCCH genes in the Brassica rapa genome. Several analyses were carried out on the identified genes to understand their roles in this plant. Comparative phylogenetic analysis classified CCCH genes into six clusters, while motif and structural analyses revealed four unique CCCH motifs including different functional motifs and intron/exon variations unique to plants compared to those in other species. Real-time qRT-PCR analysis of 10 randomly selected genes indicated they function at the early stages rather than the later stages of cold and salt stress. This study provides a basic understanding of potential candidate CCCH genes in B. rapa, their structural variation, expression patterns, and their roles under different stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alam I, Yang YQ, Wang Y, Zhu ML, Wang H-B, Chalhoub B, Lu YH (2017) Genome—wide identification, evolution and expression analysis of RING finger protein genes in Brassica rapa. Sci Rep 7:40690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L et al (2009) MEME suite: tools for motif discovery and searching. Nucl Acids Res 37:W202–W208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Blackshear PJ (2002) Tris tetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30:945–952

    Article  CAS  PubMed  Google Scholar 

  • Blanvillain R, Wei S, Wei P, Kim JH, Ow DW (2011) Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J 30:3812–3822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogamuwa S, Jang JC (2013) The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. Plant Cell Environ 36:1507–1519

    Article  CAS  PubMed  Google Scholar 

  • Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G (2012) Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genom 13:253

    Article  CAS  Google Scholar 

  • Chen W-J, Zhao Y, Peng X-J, Dong Q, Jin J, Zhou W, Cheng B-J, Ma Q (2015) Significant micro synteny with new evolutionary highlights is detected through comparative genomic sequence analysis of maize CCCH IX gene subfamily. Int J Genomics. https://doi.org/10.1155/2015/824287

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed Central  PubMed  Google Scholar 

  • Dapeng W, Yubin Z, Zhang Z, Jiang Z, Jun Y (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Dong H, Liu D, Han T, Zhao Y, Sun J, Lin S, Cao J, Chen Z-H, Huang L (2015) Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication. Sci Rep 5:16851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gama-Carvalho M, Carmo-Fonseca M (2001) The rules and roles of nucleocytoplasmic shuttling proteins. FEBS Lett 498:157–163

    Article  CAS  PubMed  Google Scholar 

  • Grabowskaa A, Wisniewskab A, Tagashirac N, Malepszyd S, Filipeckid M (2009) Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. J Plant Physiol 166:310–323

    Article  CAS  Google Scholar 

  • Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  CAS  PubMed  Google Scholar 

  • Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Banzhaf W (2008) Nonsynonymous to synonymous substitution ratio ka/ks: measurement for rate of evolution in evolutionary computation. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel problem solving from nature—PPSN X. PPSN 2008. Lecture notes in computer science, vol 5199. Springer, Berlin, pp 448–457

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Huang P, Ju H-W, Min J-H, Zhang X, Chung J-S, Cheong H-S, Kim CS (2012) Molecular and physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 2, a plasma membrane protein involved in ABA and salt stress response through the abi2-mediated signaling pathway. Plant Cell Physiol 53:193–203

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Tang J, Duan W, Wang Z, Song X, Hou X (2015) Molecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis). Front Plant Sci 6:879

    PubMed  PubMed Central  Google Scholar 

  • Jack T (2002) New members of the floral organ identity AGAMOUS pathway. Trends Plant Sci 7:7

    Article  Google Scholar 

  • Jan AMK, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K et al (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kayum MA, Jung HJ, Park JT, Ahmed NU, Saha G, Yang TJ et al (2015) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Genet Genomics 290:79–95

    Article  CAS  PubMed  Google Scholar 

  • Kielkopf CL, Lucke S, Green MR (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Lee J, Choi J-P, Park I, Yang K, Kim MK et al (2014) Functional innovations of three chronological mesohexaploid Brassica rapa genomes. BMC Genom 15:606

    Article  Google Scholar 

  • Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60:649–665

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Li M, Yang W, Xu W, Xue Y (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141:1376–1388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Ann Rev Gen 34:77–137

    Article  CAS  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M et al (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cell 26:595–605

    CAS  Google Scholar 

  • Lee SJ, Jung HJ, Kang H, Kim SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol 53:673–686

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10:383–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Jia D, Chen X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13:2269–2281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin PC, Pomeranz MC, Jikumaru Y, Kang SG, Hah C, Fujioka S et al (2011) The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. Plant J 65:253–268

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Khan RMG, Li Y, Zhang J, Hu C (2014) Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization. Mol Genet Genomics 289:855–872

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li MY, Wang F, Tang J, Xiong AS (2015) Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genom 16:33

    Article  CAS  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    Article  CAS  PubMed  Google Scholar 

  • Mosavi LK, Minor DL, Peng ZY (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 99:16029–16034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JI, Ahmed NU, Jung HJ, Arasan SK, Chung MY, Cho YG et al (2014) Identification and characterization of LIM gene family in Brassica rapa. BMC Genom 15:641

    Article  Google Scholar 

  • Paul P, Dhandapani V, Rameneni JJ, Li X, Sivanandhan G, Choi SR et al (2016) Genome-wide analysis and characterization of Aux/IAA family genes in Brassica rapa. PLoS ONE 11:e0151522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X et al (2012) CCCH type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS ONE 7:e40120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramchiary N, Lim YP (2011) Genetics of Brassica rapa L. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 215–260

    Chapter  Google Scholar 

  • Rameneni JJ, Dhandapani V, Paul P, Im S, Oh M-H, Choi SR, Lim YP (2014) Genome-wide identification, characterization, and comparative phylogeny analysis of MADS-box transcription factors in Brassica rapa. Genes Genomics 36:509–525

    Article  CAS  Google Scholar 

  • Rameneni JJ, Lee Y, Dhandapani V, Yu X, Choi SR, Oh M-H et al (2015) Genomic and posttranslational modification analysis of leucine-rich repeat receptor-like kinases in Brassica rapa. PLoS ONE 10:e0142255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Hong L, Michaels S, Amasino RM (2005) FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDALIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development 132:5471–5478

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABCs of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom 14:573

    Article  CAS  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574

    Article  CAS  PubMed  Google Scholar 

  • Sun JQ, Jiang HL, Xu YX, Li HM, Wu XY, Xie Q, Li CY (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong C, Wang X, Yu J, Wu J, Li W, Huang J et al (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14:689

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Guo YH, Wu CG, Yang GD, Li YY, Zheng CC (2008a) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9:44

    Article  CAS  Google Scholar 

  • Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008b) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 28:1035–1039

    Article  CAS  Google Scholar 

  • Wang F, Qiu N, Ding Q, Li J, Zhang Y, Li H, Gao J (2014a) Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom 15:807

    Article  CAS  Google Scholar 

  • Wang X-L, Zhong Y, Cheng Z-M (2014b) Evolution and expression analysis of the CCCH zinc finger gene family in Vitis vinifera. Plant Genome 7:15. https://doi.org/10.3835/plantgenome2014.05.0019

    Article  CAS  Google Scholar 

  • Wang Z, Tang J, Hu R, Wu P, Hou X-L, Song X-M, Xiong A-S (2015) Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genom 16:17

    Article  CAS  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan S, Xu B, Zhang J, Xie Z, Cheng Q, Yang Z, Cai Q, Huang B (2015) Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass. BMC Genom 16:129

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through Golden Seed Project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 213006-05-2-SB110). This work was also supported by a Grant from the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program (Vegetable Breeding Research Center, 710011-03-1-HD340), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pyo Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Multiple alignment of C3H protein sequences from B. rapa, A. thaliana, O. sativa, and P. trichocarpa plant species. We used this analysis to construct the phylogenetic tree. (PDF) (PDF 3541 kb)

Fig. S2

Phylogenetic tree of 63 C3H genes in B. rapa. The tree was constructed using a neighbor-joining method with 1000 iterations in the MEGA 6 software. The genes were grouped into six clusters and further sub-grouped into 1-27 categories based on motif conservation. (PDF) (PDF 71 kb)

Fig. S3

Intron/exon structures of 63 BrC3H genes were constructed using GSDS software and divided into 27 sub-groups (1–27). The scale at the bottom of each group indicates the gene length, while the legend defines the intron and exon shapes, intron phases, and untranslated regions (purple). (PDF) (PDF 510 kb)

Fig. S4

The amino acid conservation of C3H motifs that were identified in representative BrC3H genes. Representative proteins for each motif were randomly selected from the multiple protein alignment and show C3H motif conservation, which is highlighted in green rectangular boxes. (TIFF) (TIFF 6746 kb)

Fig. S5

The 25 motifs identified in 63 proteins were divided into 27 sub-groups based on their motif pattern (1–27). The proteins that had unique motif patterns in the respective group were not considered under any sub-group. The scale indicates protein length, while the 25 motifs are indicated by different colored boxes. (PDF) (PDF 246 kb)

Table S1

BrC3H gene-specific primers used for qRT-PCR analysis (DOCX 13 kb)

Table S2

Paralogs and tandem duplicate copies identified among the C3H genes in Brassica rapa (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rameneni, J.J., Dhandapani, V., Paul, P. et al. Comprehensive analysis of CCCH zinc-finger-type transcription factors in the Brassica rapa genome. Hortic. Environ. Biotechnol. 59, 729–747 (2018). https://doi.org/10.1007/s13580-018-0077-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0077-0

Keywords

Navigation