Skip to main content

Advertisement

Log in

Analysis of agricultural characteristics to establish the evaluation protocol and environmental risk assessment for genetically modified hot pepper crops

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

This study was carried out to deduce an appropriate analysis method to evaluate the homogeneity of the agricultural characteristics of genetically modified (GM) crops for environmental risk assessment. Comparative analyses were made between GM hot pepper lines and their control lines cultivated in the same year, between different GM peppers carrying the same gene but in different chromosomal loci, between the same GM peppers cultivated in different years and two different GM peppers carrying different genes from three GM peppers (B20, H15, and T20) and their control lines (P915, P2377, and THK). The aim was to determine the most appropriate comparison combination to establish the evaluating protocol and environmental risk assessment. Data of 57 different characteristics of pepper plants, green fruits and red fruits was collected during the optimal vegetation period. Of the 57 different characteristics, 24 characteristics were excluded as there was no difference and the remaining 33 characteristics were analyzed by t-test. There were statistical differences in five characteristics between the B20 and P915 lines, five characteristics between the H15 and P2377 lines and two characteristics between the T20 and THK lines cultivated either in 2008 or in 2011. On the other hand, there were significant differences in 11 characteristics between the B20 and H15 lines cultivated in 2008 and 14 characteristics between the H15 and T20 harvested in 2011. Comparative analysis of 33 agricultural characteristics between the H15 line cultivated in 2008 and 2011 showed the most significant differences. Based on this result, the comparison between the same GM lines cultivated in different years was judged meaningless when the homogeneity of agricultural characteristics of GM crops were evaluated. In conclusion, the comparative analysis between GM peppers and their control lines cultivated in the same year is the most appropriate while the homogeneity of agricultural characteristics is examined to assess environmental risk of GM peppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bae, T.W., H.G. Kang, I.J. Song, H.J. Sun, S.M. Ko, P.S. Song, and H.Y. Lee. 2011. Environmental risk assessment of genetically modified herbicide-tolerant zoysiagrass. J. Plant Biotechn. 38:105–116.

    Article  Google Scholar 

  • Barker, H., B. Reavy, A. Kumar, K.D. Webster, and M.A. Mayo. 1992. Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leaf roll luteovirus: Similarities with a type of host gene-mediated resistance. Ann. Appl. Biol. 120:55–64.

    Article  Google Scholar 

  • Bayley, C., M. Morgan, E.C. Dale, and D.W. Ow. 1992. Exchange of gene activity in transgenic plants catalyzed by the cre-lox site-specific recombination system. Plant Mol. Biol. 18:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Beck, C. and T. Ulrich. 1993. Biotechnology in the food industry. Biotechnology 11:895–902.

    Article  Google Scholar 

  • Bhandari, S.R., S. Basnet, K.H. Chung, K.H. Ryu, and Y.S. Lee. 2012. Comparisons of nutritional and phytochemical property of genetically modified CMV-resistant red pepper and its parental cultivars. Hort. Environ. Biotechnol. 53:151–157.

    Article  CAS  Google Scholar 

  • Castle, L.A., G. Wul, and D. McElroy. 2006. Agricultural input traits: Past, present and future. Current Opinion Biotechnol. 17:105–112.

    Article  CAS  Google Scholar 

  • Cho, D.W., J.P. Oh, K.W. Park, and K.H. Chung. 2009. Analysis of agricultural characteristics for the virus resistant GM pepper plants grown in three different regions in Korea. Kor. J. Hort. Sci. Technol. 27:521–529..

    Google Scholar 

  • Cho, D.W. and K.H. Chung. 2011. Analysis of agricultural characters to establish the evaluating protocol and standard assessment for genetically modified peppers. J. Environ. Sci. 20:1183–1190.

    Article  Google Scholar 

  • Cuozzo, M., K.M. O’Connell, W.K. Kaniewski, R.X. Fang, N.H. Chua, and N.E. Tumer. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Biotechnology 6:549–557.

    Article  CAS  Google Scholar 

  • Delannay, X., B.J. Lavallee, R.K. Proksch, R.L. Fuchs, S.R. Sims, J.T. Greenplate, P.G. Marrone, R.B. Dodson, J.J. Augustine, J.G. Layton, and D.A. Fischhoff. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. Kurstaki insect control protein. Biotechnology 7:1265–1269.

    Google Scholar 

  • D’Halluin, K., E. Bonne, M. Bossut, M. Debeuckeleer, and J. Leemans. 1992. Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505.

    PubMed  Google Scholar 

  • Fischoff, D.A., K.S. Bowdish, F.J. Perlak, P.G. Marrone, S.M. Mcgormick, J.G. Niedermeyer, D.A. Dean, K. Kusano-Kretzmer, E.J. Mayer, D.E. Rochester, S.G. Rogers, and R.T. Fraley. 1987. Insect tolerant transgenic tomato plants. Biotechnology 5:807–813.

    Article  Google Scholar 

  • Fromm, M.E., F. Morrish, G. Aromtrong, R. Wolliams, J. Thomas, and T.M. Klein. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–839.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, G.S. and R.T. Frayley. 1992. Transgenic Grops. Sci. Amer. 266:34–39.

    Article  Google Scholar 

  • Ge, Y., T. Norton, and J.Y. Wang. 2006. Transgenic zoysia (Zoysia japonica) plant obtained by Agrobacterium-mediated transformation. Plant Cell Rep. 25:792–798.

    Article  PubMed  CAS  Google Scholar 

  • Goy, P.A. and J.H. Duesing. 1995. From pots and plots: Genetically modified plants on trial. Biotechnology 13:454–458.

    Article  CAS  Google Scholar 

  • Hightower, R., G. Baden, E. Penzes, P. Lund, and P. Dunsmuir. 1991. Expression of antifreeze protems in transgenic plants. Plant Mol. Biol. 17:1013–1021.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, K.S., S.J. Lee, Y.H. Kwack, and K.S. Kim. 1997. Soil chemical properties of major vegetable producing open fields. Kor. Soc. Soil Sci. Fertilizer 30:146–151.

    Google Scholar 

  • James, C. 2011. Global status of commercialized biotech/GM crops: 2010. ISAAA Brief No. 43. ISAAA, Ithaca, NY, USA.

    Google Scholar 

  • John, M.E. and J. McD. Stewart. 1992. Genes for jeans: Biotechnological advances in cotton. Trends Biotechnol. 10:165–170.

    Article  CAS  Google Scholar 

  • Jongedijk, E., A.A.J.M. De Schutter, T. Stolte, P.J.M. Van Der Elzen, and B.J.G. Cornelissen. 1992. Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Biotechnology 10:422–429.

    Article  PubMed  CAS  Google Scholar 

  • Kim, G.T. 2003. A study on the growth, photosynthetic rate and chlorophyll contents of Ligularia fischeri by the growing sites. J. Korean For. Soc. 92:374–379.

    Google Scholar 

  • Kim H.C. and H.M. Kim. 2003. Risk assessment of genetically modified organisms Korea J. Toxicol. Pub. Health 19:1–12.

    Google Scholar 

  • Koziel, M.G., G.L. Beland, G. Bowman, N.B. Garozzi, R. Grenshaw, L. Grossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M.R. Meghji, E. Merlin, R. Rhodes, G.W. Warren, M. Wright, and S.V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200.

    Article  CAS  Google Scholar 

  • Lawson, G., W. Kaniewski, L. Haley, R. Rozman, G. Newell, P. Sanders, and N.E. Tumer. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: Resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Biotechnology 8:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.Y., Y.S. Song, and K.H. Ryu. 2011. Development of infectious transcripts from full-length and GFP-tagged cDNA clones of Pepper mottle virus and stable systemic expression of GFP in tobacco and pepper. Virus Res. 155:487–494.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.W. 2010. Current status on the development and commercialization of GM plants. J. Plant Biotechnol. 37:305–312.

    Article  Google Scholar 

  • Lee, Y.H., H.S. Kim, J.Y. Kim, M. Jung, Y.S. Park, J.S. Lee, S.H. Choi, N.H. Her, J.H. Lee, N.I. Hyung, C.H. Lee, S.G. Yang, and C.H. Harn. 2004. A new selection method for pepper transformation: Callus-mediated shoot formation. Plant Cell Rep. 23:50–58.

    PubMed  CAS  Google Scholar 

  • Lee, Y.H., M. Jung, S.H. Shin, J.H. Lee, S.H. Choi, N.H. Her, J.H. Lee, K.H. Ryu, K.Y. Paek, and C.H. Harn. 2009. Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep. 28:223–232.

    Article  PubMed  CAS  Google Scholar 

  • Limbo, J.A. and W.G. Dougherty. 1992. Pathogene-derved resistance to a potyvirus: Immune and resistance phenotype in the transgenic tobacco expressing the altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant Microbe Interact. 5:144–153.

    Article  Google Scholar 

  • Mitten, D.H., M.K. Redenbaugh, M. Sovero, and M.G. Kramer. 1992. Safety assessment and commercialization of transgenic fresh tomato food products, transgenic cotton products and transgenic rapeseed oil products, p. 179–184. In: R. Gasper and J. Landsmann (eds.). Proceedings of 2nd international symposium on biosafety results of field tests of genetically modified plants and microorganisms. Biologische Bundesanstalt fiir Land-und Forstwirtschaft, Braunschweig, Germany.

    Google Scholar 

  • Nelson, R.S., S.M. McGormick, X. Delannay, P. Dube, J. Layton, E.J. Anderson, M. Kaniewska, R.K. Proksch, R.B. Horsch, S.G. Rogers, R.T. Fraley, and R.N. Beachy. 1988. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology 6:403–409.

    Article  Google Scholar 

  • Nida, D.L., J.R. Anjos, G.P. Lomonossoff, and S.A. Ghabrial. 1992. Expression of cow pea mosaic virus coat protein precursor in transgenic tobacco plants. J. Gen. Virol. 73:157–163.

    Article  PubMed  CAS  Google Scholar 

  • Perlak, F.J., R.W. Deaton, T.A. Armstrong, R.L. Fuchs, S.R. Sims, J.T. Greenplate, and D.A. Fischhoff. 1990. Insect resistant cotton plants. Biotechnology 8:939–943.

    Article  PubMed  CAS  Google Scholar 

  • Powell-Abel, P., R.S. Nelson, B. De, N. Hoffman, S.G. Rogers, R.T. Fraley, and R. Beachy. 1986. Delay of the disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743.

    Article  Google Scholar 

  • Rogers, H.J. and Parkes H.C. 1995. Transgenic plants and the environment. J. Exp. Bot. 46:467–488.

    Article  CAS  Google Scholar 

  • Sijmons, P.G., B.M.M. Dekker, B. Schrammeijer, T.G. Verwoerd, P.J.M. Van Den Elzen, and A. Hoekema. 1990. Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221.

    Article  PubMed  CAS  Google Scholar 

  • Toyama, K., C.H. Bae, J.G. Kang, Y.P. Lim, T. Adachi, K.Z. Riu, P.S. Song, and H.Y. Lee. 2003. Production of the herbicide-tolerant zoysia-grass by Agrobacterium-mediated transformation. Mol. Cells 16:19–27.

    PubMed  CAS  Google Scholar 

  • Van Der Wilk, F., D.P.-L. Willink, M.J. Huis-Man, H. Huttinga, and R. Goldbach. 1991. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection. Plant Mol. Biol. 17:431–439.

    Article  PubMed  Google Scholar 

  • Zhang, L., D. Wu, L. Zhang, and C. Yang. 2007. Agrobacteriummrdiated transformation of Japanese rawgrass (Zoysia japonica Steud) containing a synthetic cryIA(b) gene from Bacillus thuringiensis. Plant Breeding 126:428–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hwan Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J.P., Chung, K.H. Analysis of agricultural characteristics to establish the evaluation protocol and environmental risk assessment for genetically modified hot pepper crops. Hortic. Environ. Biotechnol. 53, 349–356 (2012). https://doi.org/10.1007/s13580-012-0051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0051-1

Additional key words

Navigation