Skip to main content

Advertisement

Log in

Isolation and identification of antioxidative phenolic acids and flavonoid glycosides from Camellia japonica flowers

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The ethyl acetate (EtOAc) layer of the hot water extracts of Camellia japonica flowers was found to have higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than the other solvent layers. Nine phenolic compounds were isolated and purified from the EtOAc layer by Sephadex LH-20 column chromatography and octadecyl silane-high performance liquid chromatography using a guided DPPH radical-scavenging assay. The isolated compounds were identified as 3,4,5-trihydroxybenzoic acid (1), 3,4-dihydroxybenzoic acid (2), 4-hydroxybenzoic acid (3), 2,3-digalloyl-O-α-d-glucopyranoside (4), 2,3-digalloyl-O-β-d-glucopyranoside (5), quercetin 3-O-β-d-galactopyranoside (6), quercetin 3-O-β-d-glucopyranoside (7), kaempferol 3-O-β-d-galactopyranoside (8), and kaempferol 3-O-β-d-glucopyranoside (9), based on mass spectrometry and nuclear magnetic resonance. Four compounds (6–9) had been previously identified in the leaves of this plant, but other compounds (1–5) were newly isolated from this plant. Their DPPH radical-scavenging activities based on the 50% scavenging concentration decreased in the following order: 4 = 5 (4.7 μM) > 1 (9.8 μM) > 6 = 7 (8.2 μM) > α-tocopherol (24.7 M) > ascorbic acid (25.1 μM) > 2 (35.6 M) > 3 = 8 = 9 (> 250 μM). Quercetin glycosides (6, 7), gallic acid (1) and its glucosides (4, 5) showed higher DPPH radical-scavenging activities than other compounds. These results indicate that the antioxidant effect of C. japonica flowers may be attributable to quercetin glycosides and gallic acid derivatives. These isolated compounds will be useful in basic studies of plant physiology, food manufacturing, and biological function of C. japonica flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abe, N., A. Nemoto, Y. Tsuchiya, H. Hojo, and A. Hirota. 2000. Studies of the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci. Biotech. Biochem. 64:306–333.

    Article  CAS  Google Scholar 

  • Akihisa, T., K. Yasukawa, Y. Kimura, S. Takase, S. Yamanouchi, and T. Tamura. 1997. Triterpene alcohols from camellia and sasanqua oils and their anti-inflammatory effects. Chem. Pharm. Bull. 45: 2016–2023.

    PubMed  CAS  Google Scholar 

  • Arapitsas, P., S. Menichetti, F.F. Vincieri, and A. Romani. 2007. Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis. J. Agric. Food Chem. 55:48–55.

    Article  PubMed  CAS  Google Scholar 

  • Burda, S. and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49:2774–2779.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.Y., J.H. Moon, K.Y. Seong, and K.H. Park. 1998. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotech. Biochem. 62:2273–2276.

    Article  CAS  Google Scholar 

  • Cho, J.Y., S.H. Ji, J.H. Moon, K.H. Lee, K.H. Jung, and K.H. Park. 2008. A novel benzyol glucoside and phenolic compounds from the leaves of Camellia japonica. Food Sci. Biotechnol. 17:1060–1065.

    CAS  Google Scholar 

  • Cho, J.Y., H.J. Ryu, S.H. Ji, J.H. Moon, K.H. Jung, and K.H. Park. 2009. Phenolic compounds from the flower buds of Camellia japonica. Food Sci. Biotechnol. 18:766–770.

    CAS  Google Scholar 

  • Chung, J.H., H.C. Shin, J.Y. Cho, S.K. Kang, H.J. Lee, S.C. Shin, K.H. Park, and J.H. Moon. 2009. Isolation and structural determination of free radical-scavenging compounds from Korean fermented red pepper paste (Gochujang). Food Sci. Biotechnol. 18:463–470.

    CAS  Google Scholar 

  • Hahn, Y.S. 2005. Antimicrobial effects of Camellia japonica L. extract on food-borne pathogenic microorganisms. Korean J. Food Sci. Technol. 37:113–121.

    Google Scholar 

  • Ito, S., M. Kodama, and M. Konoike. 1967. Structure of camelliagenins. Tetrahedron Lett. 8:591–596.

    Article  Google Scholar 

  • Hatano, T., S. Shida, L. Han, and T. Okuda. 1991. Tannins of theaceous plants. III. Camelliatannins A and B, two new complex tannins from Camellia japonica L. Chem. Pharm. Bull. 39:876–880.

    CAS  Google Scholar 

  • Itokawa, H., N. Sawada, and T. Murakami. 1969. Structures of camelliagenins A, B, and C obtained from Camellia japonica. Chem. Pharm. Bull. 17:474–480.

    CAS  Google Scholar 

  • Itokawa, H., H. Nakajima, A. Ikuta, and Y. Iitaka. 1981. Two triterpenes from the flowers of Camellia japonica. Phytochemistry 20:2539–2542.

    Article  CAS  Google Scholar 

  • Kim, J.H., S.Y. Lee, and S.I. Choi. 2003. Anti-proliferative effect of Camellia japonica leaves on human leukemia cell line. Korean J. Herbology 18:93–98.

    Article  Google Scholar 

  • Kwon, E.J., Y.C. Kim, M.S. Kwon, C.S. Kim, W.W. Kang, J.B. Lee, and S.K. Chung. 2001. Antioxidative activity of solvent fraction and isolation of antioxidative compound from chestnut husk. J. Korean Soc. Food Sci. Nutr. 30:726–731.

    CAS  Google Scholar 

  • Lee, S.Y., E.J. Hwang, G.H. Kim, Y.B. Choi, C.Y. Lim, and S.M. Kim. 2005. Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L. Korean J. Med. Crop Sci. 13:93–100.

    CAS  Google Scholar 

  • Lu, Z.B., G.J. Nie, P.S. Belton, H.R. Tang, and B.L. Zhao. 2006. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 48:263–274.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M. and Y. Sakamoto. 1967. Isolation of (−)-epicatechol and (+)-catechol from the leaf of Camellia japonica. Tea Industry and Technology Research, Japan 34:3472–3476.

    Google Scholar 

  • Namba, T., M. Tsunezuka, Y. Takehana, S. Nunome, K. Takeda, Y.W. Shu, N. Kakiuchi, S. Takigi, and M. Hattori. 1984. Studies on dental caries prevention by traditional Chinese medicines. IV. Screening of crude drugs for anti-plaque action and effects of Artemisia capillaris spikes on adherence of Streptococcus mutans to smooth surface and synthesis of glucan. Japanese Soc. Pharm. 38:263–264.

    Google Scholar 

  • Numata, A., A. Kitajima, T. Katsuno, K. Yamamoto, N. Nagahama, C. Takahashi, R. Fujiki, and M. Nabae. 1987. An antifeedant for the yellow butterfly larvae in Camellia japonica: A revised structure of camellidin II. Chem. Pharm. Bull. 35:3948–3951.

    CAS  Google Scholar 

  • Onodera, K., K. Hanashiro, and T. Yasumoto. 2006. Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Biosci. Biotech. Biochem. 70:1995–1998.

    Article  CAS  Google Scholar 

  • Rice-Evans, C.A., N.J. Miller, and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20:933–956.

    Article  PubMed  CAS  Google Scholar 

  • Takao, T., F. Kitatani, N. Watanabe, A. Yagi, and K. Sakata. 1994. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Biochem. 58:1780–1783.

    Article  CAS  Google Scholar 

  • Yokozawa, T., C.P. Chen, E. Dong, T. Tanaka, G. Nonaka, and I. Nishioka. 1998. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 56:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, M., E. Marada, T. Murakami, H. Matsuda, J. Yamahara, and N. Murakami. 1994. Camelliasaponins B1, B2, C1, and C2, new type inhibitors of ethanol absorption in rats from the seeds of Camellia japonica L. Chem. Pharm. Bull. 42:742–744

    PubMed  CAS  Google Scholar 

  • Yoshikawa, M., T. Murakami, S. Yoshizumi, N. Murakami, J. Yamahara, and H. Matsuda. 1996. Bioactive saponins and glycosides. V. Acylated polyhydroxyolean-12-ene triterpene oligoglycosides, camelliasaponins A1, A2, B1, B2, C1, and C2, from the seeds of Camellia japonica L.: structures and inhibitory activity on alcohol absorption. Chem. Pharm. Bull. 44:1899–1907.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, M., T. Morikawa, Y. Asao, E. Fujiwara, S. Nakamura, and H. Matsuda. 2007. Medicinal flowers. XV. The structures of noroleanane- and oleanane-type triterpene oligoglycosides with gastroprotective and platelet aggregation activities from flower buds of Camellia japonica L. Chem. Pharm. Bull. 55:606–612.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun-Hyung Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HH., Cho, JY., Moon, JH. et al. Isolation and identification of antioxidative phenolic acids and flavonoid glycosides from Camellia japonica flowers. Hortic. Environ. Biotechnol. 52, 270–277 (2011). https://doi.org/10.1007/s13580-011-0157-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-011-0157-x

Additional key words

Navigation