Skip to main content
Log in

Isolation, purification and identification of antioxidants from Lepidium latifolium extracts

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Antioxidant potencies of an ethanolic extract and its components from Lepidium latifolium were investigated. In this study, we found that the ethyl acetate soluble fraction of L. latifolium was a rich source of antioxidant, resulting from its high total phenolic content. To determine the antioxidant components of the ethyl acetate fraction, a bioassay-guided fractionation approach using 1,1-diphenyl-2-picrylhydrazyl, 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate), and ferric reducing antioxidant power assays were conducted. Nine compounds were isolated and their structures were identified by MS and NMR spectral data and comparison to reported data. They are Quercetin-3-O-β-d-sophoroside-7-O-α-l-rhamnoside (1), Apetalumoside B6 (2), Kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (3), Kaempferol-7-O-α-l-rhamnopyranoside (4), Kaempferol-3-O-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (5), Kaempferol-3-O-(2-O-feruloyl-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside)-7-O-glucopyranoside (6), Kaempferol-3-O-β-d-sophoroside-7-O-α-l-rhamnoside (7), Kaempferol-3-O-robinoside-7-O-(2″″-(E)-feruloyl)-sophoroside (8), Quercetin-3-O-(2,6-di-O-β-d-glucopyranosyl)-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (9), compounds 1, 2, 4, and 8 had potent free radical scavenging activity. The IC50 values of these compounds were 9.8–12.3 and 7.4–31.4 μg/mL in DPPH and ABTS assays, respectively. The results indicate that L. latifolium is a potential natural source of antioxidants to treat several diseases related to oxidant by-products of human metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awe FB, Fagbemi TN, Ifesan BOT, Badejo AA (2013) Antioxidant properties of cold and hot water extracts of cocoa, Hibiscus flower extract, and ginger beverage blends. Food Res Int 52:490–495

    Article  CAS  Google Scholar 

  • Cheng SS, Yen PL, Chang ST (2015) Phytochemicals from wood extract of Cunninghamia konishii Hayata as antioxidant agents. Ind Crops Prod 64:39–44

    Article  CAS  Google Scholar 

  • Editorial Committee of Flora of China (1979) Flora of China, Vol. 67. Beijing Scientific Press, Beijing, p 325

    Google Scholar 

  • Erlânio OS, Camila MBAM, Camila BN, Aline AB, Margareth LA, José GMC (2015) Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crops Prod 70:7–15

    Article  Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food antioxidants. Elsevier Applied Science, London, p 1–18

    Google Scholar 

  • Haifa A, Emna M, Wafa R, Lamia H, Slim R, Mohamaed NR, Zeineb G (2016) Phenolic composition and antioxidant activity of aqueous and ethanolic leaf extracts of six Tunisian species of genus Capparis Capparaceae. Ind Crops Prod 92:218–226

    Article  Google Scholar 

  • Halil IO, Ilkay K (2016) Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using differentextraction methods. Ind Crops Prod 91:114–124

    Article  Google Scholar 

  • Jing Z, Thomas SV, Yue G, Yadong Q, Kit C, Min-Hsiung P, Chi-Tang H, James ES, QinglIi W (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680

    Article  Google Scholar 

  • Ji-Sun H, Hee-Young K, Seung-Taik L (2015) Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts. Ind Crops Prod 73:99–105

    Article  Google Scholar 

  • Kim JE, Jung MJ, Jung HA, Woo JJ, Cheigh HS, Chung HY, Choi JS (2002) A new Kaempferol 7-O-triglucoside from the leaves of Brassica juncea L. Arch Pharm Res 25:621–630

    Article  CAS  PubMed  Google Scholar 

  • Kosalec I, Bakmaz M, Pepeliniak S, Vladimir-Knezevic S (2004) Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm 54:65–72

    CAS  PubMed  Google Scholar 

  • Lea DB, Carl EO, Jens KN, Niels A (2011) Polymorphism for novel tetraglycosylated flavonols in an eco-model Crucifer, Barbarea vulgaris. J Agric Food Chem 59:6947–6953

    Article  Google Scholar 

  • Li D, Ikeda T, Matsuoka N, Nohara T, Zhang H, Sakamoto T, Nonaka GI (2006) Cucurbitane glycosides from unripe fruits of Lo Han Kuo (Siraitia grosvenori). Chem Pharm Bull 54:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yili A, Liu Y, Kawuli A, Aisa HA (2014) Chemical constituents of Hippophae rhamnoides subsp. turkestanica fruits. Chem Nat Compd 50:352–360

    Article  CAS  Google Scholar 

  • Liu S (1999) Economic flora of Qinghai, Vol. 2. Qinghai people’s press, Qinghai, p 227

    Google Scholar 

  • Luísa C, João P, Fernando A, Nuno RN, José MFN, Anabela R (2015) Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimei’s disease. Ind Crops Prod 64:45–51

    Article  Google Scholar 

  • Maria L, Bezerra A, Wallace ESF, Patrícia LDM, José DAS, Ricardo EA (2016) Bioactive compounds and antioxidant potential fruit of Ximenia americana L. Food Chem 192:1078–1082

    Article  Google Scholar 

  • Nemanja S, Tatjana M, Bojan Z, Vesna S, Violeta M, Jovana J, Ljiljana C, Branislava K, Nirit B (2016) Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. Wageningen J Life Sci 78:21–28

    Article  Google Scholar 

  • Nirupama G, Dilip KR, Nigel PB, Eimear G, Mohammad BH (2016) Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain. Food Chem 210:212–220

    Article  Google Scholar 

  • Ouyang MA, He ZD, Wu CL (2003) Anti-oxidative activity of glycosides from Ligustrum sinense. Nat Prod Res 17:381–388

    Article  CAS  PubMed  Google Scholar 

  • Rasha RAE, Ragaa MAMMS, Ahmad F (2014) Three new flavonol glycosides from Suaeda maritima. J Asian Nat Prod Res 16(5):434–439

    Article  Google Scholar 

  • Reetika S, Nishi K (2015) Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn.—a valuable medicinal tree. Ind Crops Prod 73:1–8

    Article  Google Scholar 

  • Seyed MR, Mohammad A, Arash J, Seyed HM (2015) The field efficacy of Lepidium latifolium and Zataria multiflora methanolic extracts against Varroa destructor. Parasitol Res 114:4233–4238

    Article  Google Scholar 

  • Shi P, Chao L, Wang T, Liu E, Han L, Zong Q, Li X, Zhang Y, Wang T (2015) New bioactive flavonoid glycosides isolated from the seeds of Lepidium apetalum Wild. Fitoterapia 103:197–205

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh S, Kumar S, Arora S (2007) Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem Toxicol 45:1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthum on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Tang YP, Lou FC, Wang JH (2001) Two Kaempferol triglycosides from pericarps of Sophora japonica L. China J Chin Mat Med 26:839–845

    CAS  Google Scholar 

  • Vítor S, Eulogio JL, Sandra G, Paula C (2016) Ulex europaeus: from noxious weed to source of valuable isoflavones and flavanones. Ind Crops Prod 90:9–27

    Article  Google Scholar 

  • Walker RB, Everette JD (2009) Comparative reaction rates of various antioxidants with ABTS radical cation. J Agric Food Chem 57:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wang L, Gao W (2015) Optimization of ultrasonic-assisted extraction for polysaccharide from Lepidium latifolium by response surface methodology. Cereals Oils 28:59–62

    Google Scholar 

  • Yuan J, Liu X, Yang J, Cui X (2014) Forsythia suspense leaves, a plant: extraction, purification and antioxidant activity of main active compounds. Eur Food Res Technol 238:527–533

    Article  CAS  Google Scholar 

  • Zhang X, Hu B (1994) Study on the constituents of Lpidium latifolium. Acta Bot Boreal Occident Sin 14(4):329–333

    Google Scholar 

  • Zheng W, Zhong Y, Sun J, Zhang P (2009) Study on the constituents of Orotachys fimbriatus. Chin Trad Herb Drug 40:859–862

    CAS  Google Scholar 

  • Zhigang T, Anyi C, Bendui Q, Le C, Yanqun X (2014) Chemical constituents and antioxidant activity of the Musa basjoo flower. Eur Food Res Technol 239:501–508

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Project of Discovery, Evaluation and Transformation of Active Natural Compounds, Strategic Biological Resources Service Network Program of Chinese Academy of Sciences (ZSTH-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yanduo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Haixia, W., Lijuan, M. et al. Isolation, purification and identification of antioxidants from Lepidium latifolium extracts. Med Chem Res 27, 37–45 (2018). https://doi.org/10.1007/s00044-017-2042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2042-3

Keywords

Navigation