Skip to main content
Log in

The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, one-year-old shoots of the olive (Olea europaea L.) cv. Gemlik were tested at artificial low temperatures (4, −5°C, −10°C, and −20°C) every month for two years. For low temperature treatment, the degree of cell membrane injury in leaves and barks was determined by ion leakage method. In addition, with regard to antioxidative defense mechanism, activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) enzymes were determined. Leaf and bark tissues subjected to 4°C and −5°C injured to a limited extent in all months. However, more than 50% injury occurred by temperatures equal to or colder than −10°C treatments depending on the season. For −10°C and −20°C treatments, the lowest and the highest injury in leaf and bark tissues were detected during winter and summer seasons, respectively. We determined in this study that CAT and APX enzyme activities are generally higher during fall and winter compared with those in summer. On the other hand, CAT and APX enzyme activities started increasing during fall along with a decreasing freezing injury while the activities of these enzymes decreased to some extent during winter when freezing injury was the lowest. In addition, while CAT activity decreased with low temperature treatments, APX activity did not change until −5°C treatment but decreased with decreasing temperatures starting from −10°C depending on the month the tissue was obtained. In conclusion, olive plant shows considerable tolerance to low temperatures that are achieved after daily gradual decreases by increasing cell membrane stability through complicated mechanisms including antioxidative enzyme metabolisms. In addition, APX may be more effective in maintaining cold-hardiness of olive compared with CAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, M.D., T.K. Prasad, and C.R. Stewart. 1995. Changes in isoenzyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247–1257.

    PubMed  CAS  Google Scholar 

  • Arora, R., M.E. Wisniewski, and R. Scorza. 1992. Cold acclimation in genetically related (Sibling) dedicious and evergreen peach (Prunus persica [L.] Batsch). I. seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 99: 1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K. 1992. Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum 85:235–241.

    Article  CAS  Google Scholar 

  • Baek, K.H. and D.Z. Skinner. 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science 165:1221–1227.

    Article  CAS  Google Scholar 

  • Bartolozzi, F., P. Rocchi, F. Camerini, and G. Fontanazza. 1999. Changes of biochemical parameters in olive (Olea europaea L.) leaves during an entire vegetative season, and their correlation with frost resistance. Acta Hort. 474:435–440.

    CAS  Google Scholar 

  • Bowler, C., M. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83–116.

    Article  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cansev, A., H. Gulen, A. Ipek, and A. Eris. 2006. Seasonal changes in various enzyme activities in olive genotypes. Plant Biology Meeting, August 5–9 2006, Boston, MA, USA p. 140.

  • Cansev, A., H. Gulen, and A. Eris. 2009. Cold-hardiness of olive (Olea europaea l.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J Agr. Sci. 147:51–61.

    Article  CAS  Google Scholar 

  • Chamnongpol, S., H. Willekens, W. Moeder, C. Langebartels, H. Sandermann, M. Van Montagu, D. Inze, and W. Van Camp. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. PNAS USA 95:5818–5823.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., M. Zhang, T. Chen, Y. Zhang, and Y. An. 2006. The relationship between seasonal changes in anti-oxidative system and freezing tolerance in the leaves of evergreen woody plants of Sabina. S. Afr. J. Bot. 72:272–279.

    Article  Google Scholar 

  • Cho, U.H. and J.O. Park. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 156:1–9.

    Article  PubMed  CAS  Google Scholar 

  • D’angeli, S. and M.M. Altamura. 2007. Osmatin induces cold protection in olive trees by affecting programmed cell death and cytosketelon organization. Planta 225:1147–1163.

    Article  PubMed  Google Scholar 

  • Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inze, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. CMLS 57:779–795.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G.D. and H.R. Swanson. 2001. Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ. Exper. Bot. 46:95–108.

    Article  CAS  Google Scholar 

  • Eris, A., H. Gulen, E. Barut, and A. Cansev. 2007. Annual patterns of total soluble sugars and proteins related to cold hardiness in olive (Olea europaea L. cv. Gemlik). J. Hortic. Sci. Biotech. 82:597–604.

    CAS  Google Scholar 

  • Foyer, C.H. 1993. Ascorbic acid. p. 31–58. In: R.C. Alscher, and J.L. Hess (eds.) Antioxidants in higher plants. CRC Press, FL.

    Google Scholar 

  • Fridovich, I. 1978. The biology of oxygen radicals. Science 201:875–879.

    Article  PubMed  CAS  Google Scholar 

  • Gulen, H. and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739–744.

    Article  CAS  Google Scholar 

  • Gómez-Del-Compo, M. and D. Barranco. 2005. Field evaluation of frost tolerance in 10 olive cultivars. Plant Gen. Resour. 3:385–390.

    Article  Google Scholar 

  • Guo, F.-X., M.X. Zhang, Y. Chen, W.-H. Zhang, S.-J. Xu, J.H. Wang, and L.Z. An. 2006. Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultures cells from Alpine Chorispora bungeana. Cryobiology 52:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Gusta, L.V., M. Wisniewski, N.T. Nesbitt, and K.T. Tanino. 2003. Factors to consider in artificial freeze tests. Acta Hort. 618:493–507.

    Google Scholar 

  • Halliwell, B. and J.M.C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246:501–514.

    Article  PubMed  CAS  Google Scholar 

  • Havir, E.A. and N.A. Mchale. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84:450–455.

    Article  PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe, I., P.R. Escuredo, C. Arrese-Igor, and M. Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116:173–181.

    Article  CAS  Google Scholar 

  • Kendall E.J. and B.D. Mckersie. 1989. Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant 76:86–94.

    Article  CAS  Google Scholar 

  • Kuk, Y.I., J.S. Shin, N.R. Burgos, T.E. Hwang, O.H. Han, B.H. Cho, S. Jung, and J.O. Guh. 2003. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci. 43:2109–2117.

    Article  CAS  Google Scholar 

  • Lindén, L. 2002. Measuring cold hardening in woody plants. University of Helsinki, Department of Applied Biology, Publication no. 10. Helsinki.

  • Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses. An overview. Arch. Biochem. Biophys. 444:139–158.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346–352.

    Article  CAS  Google Scholar 

  • Nakano, Y. and K. Asada. 1980. Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol. 21:1295–1307.

    CAS  Google Scholar 

  • O’kane, D., V. Gill, P. Boyd, and R. Burdon. 1996. Chilling oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377.

    Article  PubMed  Google Scholar 

  • Pacifici, R.E. and K.J.A. Davies. 1990. Protein degradation as an index of oxidative stress. Methods Enzymol. 186:485–502.

    Article  PubMed  CAS  Google Scholar 

  • Palliotti, A. and G. Bongi. 1996. Freezing injury in the olive leaf and effects of mefluidide treatment. J. Horticul. Sci. 71:57–63.

    CAS  Google Scholar 

  • Parvanova, D, S. Ivanov, T. Konstantinova, E. Karanov, A. Atanassov, T. Tsvetkov, V. Alexiieva, and D. Djilanov. 2004. Transgenic tabocco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem. 42:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T.K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance: changes in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J. 10:1017–1026.

    Article  CAS  Google Scholar 

  • Prasad, T.K. 1997. Role of catalase in inducing chilling tolerance in pre-emergence maize seedlings. Plant Physiol. 114:1369–1376.

    PubMed  CAS  Google Scholar 

  • Prasad, T.K., M.D. Anderson, B.A. Martin, and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M.V., G. Paliyath, and D.P. Ormrod. 1996. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110:125–136.

    Article  PubMed  CAS  Google Scholar 

  • Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109:105–113.

    Article  CAS  Google Scholar 

  • Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiology 101:7–12.

    PubMed  CAS  Google Scholar 

  • Sudhakar, C., A. Lakshmi, and S. Giridarakumar. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161:613–619.

    Article  CAS  Google Scholar 

  • Steponkus, P.L. 1984. Role of plasma membrane in freezing injury and cold-acclimation. Annu. Rev. Plant Phys. Plant Mol. Biol. 35:543–584.

    Article  CAS  Google Scholar 

  • Tao, D.L., G. Öquist, and G. Wingsle. 1998. Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology 37:38–45.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M.A. and B.D. Mckersie. 1993. Role of ascorbate-glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol. 141:234–239.

    CAS  Google Scholar 

  • Yoshida, S. and M. Uemura. 1990. Responses of the plasma membrane to cold acclimation and freezing stress. In: Larsson, C.H. and I.M. Møller (eds.): The plant plasma membrane. Springer, Berlin, 293–320.

    Google Scholar 

  • Zhou, R. and H. Zhao. 2004. Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol. Plant 121:399–408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Eris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cansev, A., Gulen, H. & Eris, A. The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Hortic. Environ. Biotechnol. 52, 113–120 (2011). https://doi.org/10.1007/s13580-011-0126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-011-0126-4

Additional key words

Navigation