Skip to main content
Log in

Differential transcriptional activation of copia family of different plant retrotransposons

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant genomes contain a sizeable fraction, ranging from 14 to 75% of retrotransposons (class I elements), predominantly comprising LTR (Long Terminal Repeat) elements. Movement of these elements is mediated via an RNA intermediate by copy-and-paste mechanism. The transposition of the elements is tightly regulated, however, under certain conditions such as stress; they are transcriptionally and possibly transpositionally activated. The 5’-LTRs of retrotransposons contain regulatory sequences required for their transcriptional activation. Each element is usually present in multiple copies and not all copies of an element may be functional possibly due to alterations in its internal sequence domains, without affecting the functionality of their 5’-LTRs. We analyzed the transcriptional activation of six Ty1-copia family of retrotransposons selected from six different plants (two monocots and four dicots) by monitoring pattern of GUS expression directed by 5’-LTRs in transgenic tobacco plants in response to a variety of stress factors (cold, UV, H2O2, HgCl2, CdCl2, CuCl2, 2,4-D, SA, ABA) and tissue-specific (callus, root, leaf, stem and flower) cues. We show that different 5’-LTRs show differential activation under various conditions. Two retroelements which were considered non-functional apparently have functional 5’-LTRs. No apparent correlation between the presence of sequence elements in the 5-LTRs and transcriptional activation of the retroelements in response to stress and tissue-specific signals could be established. The results suggest that the transcriptional activation and possibly silencing of different retrotransposons is a complex process and may be mediated by multiple interconnected pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LTR:

Long Terminal Repeat

LINE:

Long Interspersed Nuclear Element

SINE:

Short Interspersed Nuclear Element

ABA:

Absissic acid

SA:

Salicylic acid

References

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genom 10:279

    Article  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Baidouri M, Panaud O (2013) Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol 5:954–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  PubMed  CAS  Google Scholar 

  • Garber K, Bilic I, Pusch O, Tohme J, Bachmair A, Schweizer D, Jantsch V (1999) The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics, and use for genotype classification. Plant Mol Biol 39:797–807

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horsch RB, Klee HJ (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc Natl Acad Sci USA 83:4428–4432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaaskelainen M, Chang W, Moisy C, Schulman AH (2013) Retrotransposon BARE displays strong tissue-specific differences in expression. New Phytol 200:1000–1008

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679–684

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Koukalova B, Fojtova M, Lim KY, Fulnecek J, Leitch AR, Kovarik A (2005) Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol 139:275–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lall IP, Maneesha, Upadhyaya KC (2002) Panzee, a copia-like retrotransposon from the grain legume, pigeonpea (Cajanus cajan L.). Mol Genet Genom 267:271–280

    Article  CAS  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209

    Article  PubMed  CAS  Google Scholar 

  • Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number Ty3-Gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Wessler SR (1998) Extreme structural heterogeneity among the members of a maize retrotransposon family. Genetics 150:1245–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClintock B (1984) The significance of response of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266

    Article  PubMed  CAS  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann P, Pozárková D, Macas J (2003) Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. J Plant Mol Biol 53:399–410

    Article  CAS  Google Scholar 

  • Neumann P, Novák P, Hoštáková N (2019) Macas (2019) Systematic survey of plant LTR retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10:1. https://doi.org/10.1186/s13100-018-0144-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn JM, Barraco P, Eriksson M, Merchant S (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    Article  PubMed  CAS  Google Scholar 

  • Rieping M, Schöffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimeric heat-shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol 141:257–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Gen Genomics 272:116–127

    Article  CAS  Google Scholar 

  • Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genom 11:601

    Article  Google Scholar 

  • Voytas DF, Konieczny A, Cummings MP, Ausubel FM (1990) The structure, distribution and evolution of the Ta1 retrotransposable element family. Genetics 126:713–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao W, Su Y, Sakamot W (2007) Isolation and characterization of Ty1/copia-like retrotransposons in mung bean (Vigna radiata). J Plant Res 120:323–328

    Article  PubMed  CAS  Google Scholar 

  • Xue GP (2002) Characterization of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res 30:e77

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287

    Article  PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance of University Grants Commission (UGC) is gratefully acknowledged. SM acknowledges the CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SM designed and performed the experiments. KCU conceptualized the study and designed the experiments. DS contributed the lab support and some of the supplies. KCU and SM wrote the manuscript.

Corresponding author

Correspondence to Kailash C. Upadhyaya.

Ethics declarations

Conflict of interest

Authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Sharma, D. & Upadhyaya, K.C. Differential transcriptional activation of copia family of different plant retrotransposons. J. Plant Biochem. Biotechnol. 31, 915–924 (2022). https://doi.org/10.1007/s13562-022-00771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-022-00771-8

Keywords

Navigation