Skip to main content
Log in

RNA- and miRNA-interference to enhance abiotic stress tolerance in plants

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In response to rapidly changing environment, plants have employed a plethora of mechanisms that provide phenotypic plasticity and allow fine-tuning of stress-response actions. Advances in molecular biology have made substantial progress in identification of genomic regions and underlying mechanisms that influence transcriptional and post-transcriptional regulation of abiotic stress pathways. In plants, small RNAs (sRNAs) have evolved through a series of pathways and contributed to the complexity of these molecules and play an essential role in the regulation of stress response activities. It has been shown that one way of plant response to deal with environmental stress is by modulating gene expression through the activity of small RNAs. Small, non-coding RNAs (ncRNAs) belong to a distinct class of regulatory RNAs and control a variety of biological processes in plants and other systems. The ncRNAs, particularly microRNAs (miRNAs) and (siRNAs) have emerged as an essential regulator of plant abiotic stress response that are the driving molecules of RNA interference (RNAi) and ensure up- and down-regulation of the target genes, which participate in important biological processes. Thus, RNA- and miRNA- interference has become a novel strategy for crop improvement. This review highlights the regulatory roles of miRNAs and siRNAs in the adaptive response to various plant abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AGO:

Argonaute

amiRNAs:

Artificial miRNAs

dsRNA:

Double-stranded RNA

GM:

Genetically modified

micro RNAs:

MiRNAs

miRNAi:

MiRNA interference

ncRNAs:

Non-coding RNAs

PTGS:

Post-transcriptional Gene Silencing

RNAi:

RNA interference

RISC:

RNA Induced Silencing Complex

sRNAs:

Small RNAs

siRNAs:

Small interfering RNAs

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Funct Integr Genomics 16(3):221–233

    Article  PubMed  CAS  Google Scholar 

  • Akman M, Bhikharie AV, McLean EH, Boonman A, Visser EJW, Schranz ME, Van Tienderen PH (2012) Wait or escape? Contrasting submergence tolerance strategies of Rorippaamphibia, Rorippasylvestris and their hybrid. Ann Bot 109:1263–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW (2016) Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genet Mol Res 15:15018299

    Article  PubMed  CAS  Google Scholar 

  • Anami E, Inzé D (2010) Silencing approach using Poly (ADP-ribose) polymerase gene to improve drought stress tolerance in maize. Afrika Focus 23(2)

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:1–11

    Article  Google Scholar 

  • Barnett JR (1981) Secondary xylem cell development. In: Barnett JR (ed) Xylem Cell Development. Castle House Publications, Tunbridge Wells, UK, pp 47–95

    Google Scholar 

  • Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu J-K (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:1–11

    Article  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Geurriero G (2019) Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Block MD, Verduyn C, Brouwer DD, Cornelissen M (2005) Poly (ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M (2018) Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 13:e0193517

    Article  PubMed  PubMed Central  Google Scholar 

  • Brantl S (2002) Antisense-RNA regulation and RNA interference. Biochim Biophys Acta-Gene Struct Expression 1575:15–22

    Article  CAS  Google Scholar 

  • Buiatti M, Christou P, Pastore G (2013) The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. Genes Nutr 8(3):255–270

    Article  PubMed  CAS  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capone R, Bilali HE, Debs P, Cardone G, Driouech N (2014) Food system sustainability and food security: connecting the dots. J Food Secur 2:13–22

    Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94

    Article  PubMed  CAS  Google Scholar 

  • Cheah BH, Nadarajah K, Divate MD, Wickneswari R (2015) Identification of four functionally important micro-RNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genom 16:692

    Article  Google Scholar 

  • Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2015) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhou T, Zhu JK (2007) Small RNAs: big role in abiotic stress tolerance of plants. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, The Netherlands, pp 223–260

    Chapter  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri S (2009) Lesser known relatives of miRNA. Biochem Biophys Res Commun 388:177–180

    Article  PubMed  CAS  Google Scholar 

  • Cisneros AE, Carbonell A (2020) Artificial small RNA-based silencing tools for antiviral resistance in plants. Plants 9:669

    Article  PubMed Central  CAS  Google Scholar 

  • Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA (2012) Non-coding RNAs in the plant response to abiotic stress. Planta 236:943–958

    Article  PubMed  CAS  Google Scholar 

  • Dai L-F, Ya-Ling C, Xiang-Dong L, Xiu-Fang W, Feng-Lei C, Fan- Tao Z, Yi Z, Jian-Kun X (2015) Level and pattern of DNA methylation changes in rice cold tolerance introgression lines derived from Oryza rufipogon Griff. Euphytica 205:73–83

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2018) Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Mol Biol 98:101–120

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo L, Sorenson R, Bailey-Serres J, Hunt AG (2017) Noncanonical alternative polyadenylation contributes to gene regulation in response to hypoxia. Plant Cell 29:1262–1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Ye Y, Jiang Z, Wang Y, Zhu C (2016) MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Front Plant Sci 7:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X (2017) microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977–994

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177:1691–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fard EM, Bakhshi B, Keshavarznia R, Nikpay N, Shahbazi M, Salekdeh GH (2017) Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol Biochem 118:121–129

    Article  PubMed  CAS  Google Scholar 

  • Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446–455

    Article  PubMed  CAS  Google Scholar 

  • FDA (1992) Statement of policy: foods derived from new plant varieties. Fed Regist 57:22984–23005

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81

    Article  PubMed  CAS  Google Scholar 

  • Fortes AM, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  PubMed  CAS  Google Scholar 

  • Gallusci P, Dai Z, Ge´nard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel Muguet S (2017) Epigenetics for plant improvement: current knowledge and modelling avenues. Trends Plant Sci 22:610–623

    Article  PubMed  CAS  Google Scholar 

  • Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, and Mustropha A (2016) Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in arabidopsis. Plant Cell 28: 160–180

  • Gasparis S, Yanushevska Y, Nadolska-Orczyk A (2017) Bioinformatic identification and expression analysis of new microRNAs from wheat (Triticum aestivum L.). Acta Physiol Plant 39:1–13

    Article  CAS  Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Pablo M (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773

    Article  PubMed  CAS  Google Scholar 

  • Gibbs DJ, Conde JV, Berckhan S, Prasad G, Mendiondo GM, Holdsworth MJ (2015) Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol 169:23–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J e: 250158

  • Giuntoli B, Perata P (2018) Group vii ethylene response factors in arabidopsis: Regulation and physiological roles. Plant Physiol 176:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Gu XD, Sun MY, Zhang L, Fu HW, Cui L, Chen RZ, Zhang DW, Tian JK (2010) UV-B induced changes in the secondary metabolites of Morus alba L. leaves. Molecules 15(5):2980–2993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR 398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  PubMed  CAS  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinf 9:183–199

    Article  CAS  Google Scholar 

  • Guo F, Han N, Xie Y, Fang K, Yang Y, Zhu M, Wang J, Bian H (2016) The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell Environ 39(10):2288–2302

    Article  PubMed  CAS  Google Scholar 

  • Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193

    Article  PubMed  CAS  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20(2):88–98

    Article  PubMed  CAS  Google Scholar 

  • Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen PM, Liu TY, Chen YS (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044–4060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F, Hu F, Zhao Y, Li Z, Fu B, Li Z (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Iizumi T, Sakuma H, Yokozawa M, Luo J-J, Challinor AJ, Brown ME, Sakurai G, Yamagata T (2013) Prediction of seasonal climate-induced variations in global food production. Nat Climate Change 3:904–908

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    Article  CAS  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  PubMed  CAS  Google Scholar 

  • Jia X, Ren L, Chen QJ, Li R, Tang G (2009) UV-B-responsive microRNAs in Populustremula. J Plant Physiol 166:2046–2057

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2018) Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ 41:936–946

    Article  PubMed  CAS  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Sinha K, Bhunia RK (2019) Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol Biol Rep 46:2577–2593

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Bhunia RK, Rajam MV (2020) MicroRNAs as potential targets for improving rice yield via plant architecture modulation: recent studies and future perspectives. J Biosci 45:1–17

    Article  Google Scholar 

  • Kehr J (2013) Systemic regulation of mineral homeostasis by microRNAs. Front Plant Sci 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta—Gene Regulatory Mechanisms 1819:137–148

    Article  CAS  Google Scholar 

  • Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821–831

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Singh A (2016) Epigenetic regulation of abiotic stress tolerance in plants. Adv Plants Agric Res 5:00179

    Google Scholar 

  • Kumar V, Shriram V, Kishor PK, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4(1):37–48

    Article  Google Scholar 

  • Kumar J, Jain K, Kumari P, Mohanty A, Rajani K, Kumar RR, Ranjan T (2020) RNA interference: An overview. Genetic transformation in crops. Ed. Kin-Ying To, Intech Open, London

  • Kushawaha AK, Khan A, Sopory SK, Sanan-Mishra N (2021) Priming by high temperature stress induces microRNA regulated heat shock modules indicating their involvement in thermopriming response in rice. Life (basel) 11:291

    CAS  Google Scholar 

  • Lee TA, Bailey-Serres J (2019) Integrative analysis from the epigenome to translatome uncovers patterns of dominant nuclear regulation during transient stress. Plant Cell 31:2573–2595

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037

    Article  CAS  Google Scholar 

  • Li DH, Hui LIU, Yang YL, Zhen PP, Liang JS (2009) Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci 16:14–20

    Article  Google Scholar 

  • Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014a) Heat-induced TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a–directed pathways in Arabidopsis. Plant Cell 26:1764–1780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014b) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize roots welling. BMC Plant Biol 14:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Yang T, Guo Z, Wang Q, Chai M, Wu M, Li X, Li W, Li G, Tang J, Tang G (2020) Maize microRNA166 inactivation confers plant development and abiotic stress resistance. Int J Mol Sci 21(24):9506

    Article  PubMed Central  CAS  Google Scholar 

  • Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, van Dongen JT (2011) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol 190:442–456

    Article  PubMed  CAS  Google Scholar 

  • Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, Lin CC, Liang YC, Li YC, Kuo YW, King YC, Lai HM (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, He Z (2020) Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci 11:e595603

    Article  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X (2019) Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS One 14:e0219176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loreti E, van Veen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:64–71

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L (2014) Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PloS One 9:e91369

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  PubMed  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M (2007) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231

    Article  PubMed  CAS  Google Scholar 

  • Mezzetti B, Smagghe G, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Kostov K, Sabbadini S, Opsahl-Sorteberg HG, Ventura V, Taning CNT (2020) RNAi: What is its position in agriculture? J Pest Sci 93:1125–1130

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  PubMed  CAS  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJH, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 106:18843–18848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noman A, Sanaullah T, Khalid N, Islam W, Khan S, Irshad MK, Aqeel M (2019) Crosstalk between plant miRNA and heavy metal toxicity. In: Sablok G (ed) Plant Metallomics and Functional Omics. Springer, Cham, pp 145–168

    Chapter  Google Scholar 

  • Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Pandey C, Raghuram B, Sinha AK, Gupta M (2015) miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings. Metallomics 7(5):857–866

    Article  PubMed  CAS  Google Scholar 

  • Pandita D (2019) Plant MIRnome: miRNAbiogenesis and abiotic stress response. Plant Abiotic Stress Response. Springer, Berlin/Heidelberg, Germany, pp 449–474

    Google Scholar 

  • Papareddy RK, Páldi K, Paulraj S, Kao P, Lutzmayer S, Nodine MD (2020) Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol 21:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pareek M, Yogindran S, Mukherjee SK, Rajam MV (2015) Plant MicroRNAs: biogenesis, functions, and applications. In: Bahadur et al. (ed.) Plant Biology and Biotechnology, Springer, New Delhi, pp. 639–661

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peschansky VJ, Wahlestedt CWC (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad A, Sharma N, Prasad M (2020) Noncoding but CODING: PrimiRNA into the action. Trends Plant Sci 26:204–206

    Article  PubMed  Google Scholar 

  • Privalle LS, Chen J, Clapper G, Hunst P, Spiegelhalter F, Zhong CX (2012) Development of an agricultural biotechnology crop product: testing from discovery to commercialization. J Agric Food Chem 60(41):10179–10187

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Hai B, Guo J, Li Y, Zhang L (2016) Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem 101:60–67

    Article  PubMed  CAS  Google Scholar 

  • Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ (2019) Classification and experimental identification of plant long non-coding RNAs. Genomics 111:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues TB, Petrick JS (2020) Safety considerations for humans and other vertebrates regarding agricultural uses of externally applied RNA molecules. Front Plant Sci 11:407

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS (2015) MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 242(1):339–351

    Article  PubMed  CAS  Google Scholar 

  • Sachs MM, Ho THD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37(1):363–376

    Article  CAS  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta 225:523–539

    Article  PubMed  CAS  Google Scholar 

  • Seto KC, Ramankutty N (2016) Hidden linkages between urbanization and food systems. Science 352:943–945

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Jiang F, Wen J, Wu Z (2019) Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol 19:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Prasad M (2021) Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol, 1–14

  • Singh RK, Prasad A, Maurya J, Prasad M (2021) Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Rep, 1–9

  • Sinnott EW (1952) Reaction wood and the regulation of tree form. Am J Bot 39:69–78

    Article  Google Scholar 

  • Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kishor PK (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  PubMed  CAS  Google Scholar 

  • Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD (2019) The role of UV-B light on small RNA activity during grapevine berry development. G3 9: 769-787

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in Gymnosperms. Springer Verlag, Berlin

    Book  Google Scholar 

  • Tuteja N, Gill SS, Tuteja R (2011) Plant responses to abiotic stresses: shedding light on salt, drought, cold and heavy metal stress. Omics Plant Abiotic Stress Tolerance 1:39–64

    Article  Google Scholar 

  • Tyagi S, Sharma S, Ganie SA, Tahir M, Mir RR, Pandey R (2019) Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. 3 Biotech 9:1–12

    Article  Google Scholar 

  • Van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367

    Article  PubMed  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crété P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73

    Article  PubMed  CAS  Google Scholar 

  • Waititu JK, Zhang C, Liu J, Wang H (2020) Plant and non-coding RNAs: Origin, biogenesis, mode of action and their roles in abiotic stress. Intern J Mol Sci 21:8401

    Article  CAS  Google Scholar 

  • Wang HLV, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdiscip Rev: RNA 7:356–381

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C, Griffiths R, Kuzma M, Wan J, Huang Y (2009) Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Mol Plant 2:191–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7:e48445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Sun YF, Song N, Wang XJ, Feng H, Huang LL, Kang ZS (2013) Identification of UV-B-induced microRNAs in wheat. Genet Mol Res: GMR 12:4213–4221

    Article  PubMed  CAS  Google Scholar 

  • Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PloS One 9:e91357

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu W, Shen H, Zhu X, Zhai L, Xu L, Wang R, Gong Y, Limera C, Liu L (2015) Identification of radish (Raphanus sativus L.) miRNAs and their target genes to explore miRNA-mediated regulatory networks in lead (Pb) stress responses by high-throughput sequencing and degradome analysis. Plant Mol Biol Rep 33(3):358–376

    Article  CAS  Google Scholar 

  • Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perata P, Van Dongen JT, Licausi F (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun 5(1):1–10

    Article  Google Scholar 

  • White MD, Klecker M, Hopkinson RJ, Weits DA, Mueller C, Naumann C, O’Neill R, Wickens J, Yang J, Brooks-Bartlett JC, Garman EF (2017) Plant cysteine oxidases are dioxygenases that directly enable arginyltransferase-catalysed arginylation of N-end rule targets. Nat Commun 8(1):1–9

    Article  Google Scholar 

  • Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Joshi CP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Zeng C, Chen Z, Zhang K, Chen X, Zhou Y, Song S, LuC YR, Yang Z, Zhou J (2014) Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. BMC Genomics 15:1–19

    Article  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:1–11

    Article  Google Scholar 

  • Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Ueda Y, Mukai A, Ochiai K, Matoh T (2018) Rice phytochelatin synthases Os PCS 1 and Os PCS 2 make different contributions to cadmium and arsenic tolerance. Plant Direct 2:e00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Li D, Mao D, Liu XUE, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativaL.). Plant Cell Environ 36:2207–2218

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Guo J, Cheng J, Jiang Z, Xu N, An X, Chen Z, Hao J, Yang S, Xu Z, Shen C (2020) Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing. Ind Crops Prod 151:112484

    Article  CAS  Google Scholar 

  • Yu Y, Ni Z, Wang Y, Wan H, Hu Z, Jiang Q, Sun X, Zhang H (2019a) Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci 285:68–78

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Wang X, Mu X, Zhang L (2019b) RNAi mediated silencing of dehydrin gene WZY2 confers osmotic stress intolerance in transgenic wheat. Funct Plant Biol 46:877–884

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z (2013) Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Plant Physiol 147:181–193

    Article  CAS  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33(2):403–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang W, Wang M, Zhang HY, Liu JH (2016) The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol 57:1865–1878

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17:233–251

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Tang W (2019) MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics 294:379–393

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Indian Council of Agricultural Research, New Delhi (Grant F. No.: CS/18(14)/2015-O&P) for a research grant. We are thankful to the Department of Biotechnology and the Department of Science and Technology, New Delhi for their generous support in carrying out the RNAi work in the lab. MVR is grateful to the University Grants Commission (UGC) for BSR Faculty Fellowship. RT is thankful to the UGC for Senior Research Fellowship. We also thank the UGC for SAP (DRS-III) programme, DST for FIST (Level 2) programme and DU-DST PURSE (Phase II) grant.

Author information

Authors and Affiliations

Authors

Contributions

MVR conceived the idea. RT wrote the manuscript and MVR corrected and edited the manuscript. Both authors read and approved the manuscript.

Corresponding author

Correspondence to Manchikatla Venkat Rajam.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R., Rajam, M.V. RNA- and miRNA-interference to enhance abiotic stress tolerance in plants. J. Plant Biochem. Biotechnol. 31, 689–704 (2022). https://doi.org/10.1007/s13562-022-00770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-022-00770-9

Keywords

Navigation