Skip to main content
Log in

An efficient callus proliferation protocol and rhaponticin accumulation of Rheum franzenbachii Munt., a medicinal plant

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient callus proliferation system for Rheum franzenbachii Munt., a rare medicinal plant, has been developed. Callus induced from leaf explants incubated on Murashige and Skoog (MS) medium with appropriate supplements of plant growth regulators. In the 6-benzylaminopurine (6-BAP) in combination with α-naphthalene acetic acid (NAA) treatments, different concentrations of NAA showed different induction effects on explants. When concentration of 6-BAP was as high as 2.0 mgl−1 in combination with 0.5 mgl−1 NAA, the callus induction rate reached 58.3%. N-phenyl-N’-1,2,3-thiadiazol-5-ylure (TDZ) in combination with NAA was very suitable for callus proliferation compared to TDZ in combination with 2,4-dicholorophenoxy acetic acid (2,4-D) or TDZ in combination with indole-3-acetic acid (IAA). Fresh and dry weight of callus cultured on MS medium supplemented with 0.5 mgl−1 TDZ in combination with 0.2 mgl−1 NAA increased 26.3 and 15.0 times within 35 days culture, respectively. Quantitative analysis of rhaponticin by HPLC showed that the phytochemical profile of callus was similar to that of wild plants, and the content of rhaponticin in callus cultured on MS medium supplemented with 0.5 mgl−1 TDZ and 0.2 mgl−1 NAA was 16.6 mgg−1DW compared to that of 4.0 mgg−1 DW in wild plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

IAA:

Indole-3-acetic acid

NAA:

Naphthaleneacetic acid

TDZ:

Thidiazuron

2,4-D:

2,4-dicholorophenoxy acetic acid

MS:

Murashige and Skoog

References

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Brent T, Steven FV (2008) Growth, morphogenesis, and essential oil production in Mentha spicata L. plantlets in vitro. In Vitro Cell Dev Biol-Plant 44:40–50

    Article  Google Scholar 

  • Choi SB, Ko BS, Park SK (2006) Insulin sensitizing and a-glucoamylase inhibitory action of sennosides, rhein and rhaponticin in Rhei Rhizoma. Life Sci 78(9):934–942

    Article  PubMed  CAS  Google Scholar 

  • Dhandapani M, Kim DH, Hong S-B (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cell Dev Biol Plant 44:18–25

    CAS  Google Scholar 

  • Flora of China Editorial Committee of Chinese Academy of Sciences (1984) Flora of China. Science Press, 171–172

  • Guo B, Gao M, Liu CZ (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep 26:261–265

    Article  PubMed  CAS  Google Scholar 

  • Hu RL, Zhu BC (1989) Leaves tissue culture of medicinal plant Rheum franzenbachii Munt. J Hebei Univ Nat Sci Ed 11(4):55–58

    Google Scholar 

  • Jain R, Sinha A, Jain D, Kachhwaha S, Kothari SL (2011) Adventitious shoot regeneration and in vitro biosynthesis of steroidal lactones in Withania coagulans (Stocks) Dunal. Plant Cell Tiss Org Cult 105(1):135–140

    Article  CAS  Google Scholar 

  • Kim DH, Park EK, Bae EA (2000) Metabolism of rhaponticin and chrysophanol 8-o-β-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol Pharm Bull 23(7):830–833

    PubMed  CAS  Google Scholar 

  • Makunga NP, van Staden J (2008) An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L. Plant Cell Tiss Organ Cult 92:63–72

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ngoc TM, Minh PTH, Hung TM (2008) Lipoxygenase inhibitory constituents from rhubarb. Arch Pharm Res 31(5):598–605

    Article  PubMed  CAS  Google Scholar 

  • Park EK, Choo MK, Moon HK (2002) Antithrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria. Arch Pharm Res 25(4):528–533

    Article  PubMed  CAS  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  PubMed  CAS  Google Scholar 

  • Ryu SY, Choi SU, Lee CO (1994) Antitumor activity of some phenolic components in plants. Arch Pharm Res 17(1):42–44

    Article  CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide A biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera Dunal), a main medicinal plant in ayurveda. Chem Pharma Bull 55:1371–1375

    Article  CAS  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wang AQ, Li JL, Wu ZZ (2001) Studies on stilbenes in Rheum franzenbachii. Chin Tradit Herb Drugs 32(10):878–880

    CAS  Google Scholar 

  • Wang AQ, Li JL, Wu ZZ (2003a) Studies on non-stilbenes in Rheum franzenbachii. Chin Tradit Herb Drugs 34(8):685

    Google Scholar 

  • Wang JL, Liao XR, Zhang HM, Du JF, Chen PL (2003b) Accumulation of chlorogenic acid in cell suspension cultures of Eucommia ulmoides Oliv. Plant Cell Tiss Organ Cult 74(2):193–195

    Article  CAS  Google Scholar 

  • Wang JL, Wang Q, Wang J, Lu Y, Xiao X, Gong WZ, Liu JK (2009) Effect of different plant growth regulators on micro-tuber induction and plant regeneration of Pinellia ternate (Thunb) Briet. Physiol Mol Biol Plants 15(4):359–365

    Article  CAS  Google Scholar 

  • Wang JL, Wang J, Liu K, Xiao X, Gong WZ, Lu Y, Liu MF, Xu DT (2010) An efficient plant regeneration system with in vitro flavonoid accumulation for Hylotelephium tatarinowii (Maxim.) H. Ohba. In Vitro Cell Dev Biol-Plant 46:445–450

    CAS  Google Scholar 

  • Wang XD, Bi JJ, Huang LH (2007) HPLC determination of rhaponticin in Rheum hotaoense C.Y. Cheng et T.C.Kao. Bull Acad Mil. Med Sci 31(5):498–499

    CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Basic Research Program of China (973 Program, 2009CB522300), the Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China (09708211Z1), Program of State Ethnic Affairs Commission (09ZY09), the “985” Project (MUC985) , “111” Project (B08044) and the Fundamental Research Funds for the Central Universities (0910KYZY46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junli Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Lu, Y., Wang, Q. et al. An efficient callus proliferation protocol and rhaponticin accumulation of Rheum franzenbachii Munt., a medicinal plant. J. Plant Biochem. Biotechnol. 20, 252–257 (2011). https://doi.org/10.1007/s13562-011-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-011-0055-4

Keywords

Navigation