Skip to main content
Log in

Dysfonction cardiaque au cours du sepsis : mythe ou réalité ?

Cardiac dysfunction in sepsis: Myth or reality?

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

L’atteinte cardiaque induite par le sepsis sévère et le choc septique est systématique et réversible. Elle touche la fonction systolique et diastolique des deux ventricules. Le diagnostic repose principalement sur l’échocardiographie doppler. Les paramètres de fonction cardiaque utilisés en routine dépendent des conditions de charge ventriculaire, et notamment de la postcharge. C’est pourquoi une évaluation hémodynamique répétée est nécessaire à la phase aiguë du choc septique. La fréquence de la dysfonction systolique jugée sur la fraction d’éjection du ventricule gauche (FEVG) en échocardiographie varie entre 27 et 67 % des cas. Elle ne semble pas être associée à la survie comme suggéré initialement, tout comme la dilatation ventricule gauche (VG) dès lors que la taille de cavité ventriculaire est indexée à la surface corporelle. En revanche, l’hyperkinésie VG, qui reflète une vasoplégie intense, pourrait être un signe de gravité. L’anomalie de relaxation du VG est observée dans 37 à 62 % des cas. Elle semble constituer un facteur de mauvais pronostic indépendant, sous réserve de confirmer la validité externe des études publiées. La dysfonction ventriculaire droite est également décrite au cours du choc septique, qu’il existe une insuffisance respiratoire aiguë associée ou non. Elle peut être particulièrement sévère en cas de syndrome de détresse respiratoire aiguë chez un patient sous ventilation mécanique. Des études portant sur de larges cohortes sont nécessaires pour établir ou confirmer le rôle pronostique de la cardiomyopathie septique et personnaliser la prise en charge des patients en choc septique en fonction du profil de la défaillance cardiocirculatoire.

Abstract

Severe sepsis and septic shock systematically result in a cardiac impairment, which involves the systolic and diastolic function of both ventricles. Diagnosis mainly relies on doppler echocardiography. Parameters of cardiac function routinely used on clinical grounds are loaddependent and are particularly sensitive to afterload. Accordingly, serial hemodynamic assessments should be performed if necessary during the initial management of septic shock. The frequency of systolic dysfunction assessed using left ventricular (LV) ejection fraction ranges from 27 to 67% of patients. It does not appear to be associated with survival as initially suggested, such as LV dilatation, when the ventricular cavity size is indexed to body area. In contrast, LV hyperkinesia that reflects underlying profound vasoplegia could be a warning sign. Abnormal LV relaxation is observed in 37–62% of septic patients. Published studies suggest that it could be an independent predictor of death pending further external validation confirmation. Right ventricular dysfunction is also observed in patients with septic shock, irrespective of the presence of associated acute respiratory failure. Severe presentation may be encountered especially in patients with sepsis-associated acute respiratory distress syndrome who are under positive-pressure ventilation. Further large-scale studies including large cohorts of patients are required to establish or confirm the prognostic role of septic cardiomyopathy, and to tailor the acute management of septic shock patients according to their hemodynamic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. The EPISEPSIS study group (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–8

    Article  Google Scholar 

  2. Seymour CW, Rea TD, Kahn JM, et al (2012) Severe sepsis in pre-hospital emergency care. Am J Respir Crit Care Med 186:1264–71

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vincent JL, Sakr Y, Sprung CL, et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–53

    Article  PubMed  Google Scholar 

  4. Ricard-Hibon A, Losser MR, Kong R, et al (1998) Systemic pressure-flow reactivity to norepinephrine in rabbits: impact of endotoxin and fluid loading. Intensive Care Med 24:959–66

    Article  CAS  PubMed  Google Scholar 

  5. Suffredini AF, Fromm RE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280–7

    Article  CAS  PubMed  Google Scholar 

  6. Cholley B, Lang RM, Berger DS, et al (1995) Alterations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Physiol 269:H375–H84

    CAS  PubMed  Google Scholar 

  7. Caroll GC, Snyder JV (1982) Hyperdynamic severe intravascular sepsis depends on fluid administration in cynomolgus monkey. Am J Physiol 243:R131–R41

    Google Scholar 

  8. Rackow EC, Kaufman BS, Falk JL, et al (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22:11–22

    CAS  PubMed  Google Scholar 

  9. Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–90

    Article  CAS  PubMed  Google Scholar 

  10. Jardin F, Valtier B, Beauchet A, et al (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20:550–4

    Article  CAS  PubMed  Google Scholar 

  11. Boufferache K, Amiel JB, Chimot L, et al (2012) Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med 40:2821–7

    Article  Google Scholar 

  12. Joulin O, Marechaux S, Hassoun S, et al (2009) Cardiac forcefrequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care 13:R14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hochstadt A, Meroz Y, Landesberg G (2011) Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? J Cardiothorac Vasc Anesth 25:526–35

    Article  PubMed  Google Scholar 

  14. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–608

    Article  PubMed  Google Scholar 

  15. Cunnion RE, Schaer GL, Parker MM, et al (1986) The coronary circulation in human septic shock. Circulation 73:637–44

    Article  CAS  PubMed  Google Scholar 

  16. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–41

    Article  CAS  PubMed  Google Scholar 

  17. Groeneveld AB, Van Lambalgen AA, Van Den Bos GC, et al (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25:80–8

    Article  CAS  PubMed  Google Scholar 

  18. Watts JA, Kline JA, Thornton LR, et al (2004) Metabolic dysfunction and depletion and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36:141–50

    Article  CAS  PubMed  Google Scholar 

  19. Parrillo JE, Burch C, Shelhamer JH, et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar A, Thota V, Dee L, et al (1996) Tumor necrosis-alpha and interleukin-1 beta are responsible for depression of in-vitro myocardial cell contractility induced by serum from human septic shock. J Exp Med 183:949–58

    Article  CAS  PubMed  Google Scholar 

  21. Landesberg G, Levin PD, Gilon D, et al (2015) Myocardial dysfunction in severe sepsis and septic shock. No correlation with inflammatory cytokines in real-life clinical setting. Chest 148:93–102

    Article  PubMed  Google Scholar 

  22. Kumar A, Brar R, Wang P, et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R76

    CAS  PubMed  Google Scholar 

  23. Tavernier B, Mebazaa A, Mateo P, et al (2001) Phosphorylation-dependent alteration in myofilament calcium sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 163:362–7

    Article  CAS  PubMed  Google Scholar 

  24. Vieillard-Baron A, Cecconi M (2014) Understanding cardiac failure in sepsis. Intensive Care Med 40:1560–3

    Article  PubMed  Google Scholar 

  25. Natanson C, Fink MP, Ballantyne HK, et al (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78:259–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellrodt AG, Riedinger MS, Kimchi A, et al (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110:402–9

    Article  CAS  PubMed  Google Scholar 

  27. Natanson C, Danner RL, Elin RJ, et al (1989) Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Invest 83:243–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozier Y, Guéret P, Jardin F, et al (1984) Two-dimensional echocardiographic demonstration of acute myocardial depression in septic shock. Crit Care Med 12:596–9

    Article  CAS  PubMed  Google Scholar 

  29. Jardin F, Brun-Ney D, Auvert B, et al (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–60

    Article  CAS  PubMed  Google Scholar 

  30. Huang SJ, Nalos M, McLean AS (2013) Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit Care 17:R96

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vieillard-Baron A, Caille V, Charron C, et al (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–6

    Article  PubMed  Google Scholar 

  32. Ellrodt AG, Riedinger MS, Kimchi A, et al (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110:402–9

    Article  CAS  PubMed  Google Scholar 

  33. Sanfilippo F, Corredor C, Fletcher N, et al (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 41:1004–13

    Article  PubMed  Google Scholar 

  34. Landesberg G, Gilon D, Meroz Y, et al (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landesberg G, Jaffe AS, Gilon D, et al (2014) Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med 42:790–800

    Article  CAS  PubMed  Google Scholar 

  36. Vieillard Baron A, Schmitt JM, Beauchet A, et al (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94:400–6

    Article  CAS  PubMed  Google Scholar 

  37. Chauvet JL, El-Dash S, Delastre O, et al (2015) Early dynamic left intraventricular obstruction is associated with hypovolemia and high mortality in septic shock patients. Crit Care 19:262

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weng L, Liu Y, Du B, et al (2012) The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care 16:R71

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hestenes SM, Halvorsen PS, Skulstad H, et al (2014) Advantages of strain echocardiography in assessment of myocardial function in severe sepsis: an experimental study. Crit Care Med 42: e432–e40

    Article  PubMed  Google Scholar 

  40. Basu S, Frank LH, Fenton KE, et al (2012) Two-dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 13:259–64

    Article  PubMed  Google Scholar 

  41. Chang WT, Lee WH, Lee WT, et al (2015) Left ventricular global longitudinal strain as an independent prognostic predictor in patients with septic shock under intensive care. Intensive Care Med 41:1791–9

    Article  PubMed  Google Scholar 

  42. Orde SR, Pulido JN, Masaki M, et al (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vignon P, Huang SJ (2015) Global longitudinal strain in septic cardiomyopathy: the hidden part of the iceberg? [Editorial] Intensive Care Med 41:1851–3

    Article  PubMed  Google Scholar 

  44. Etchecopar-Chevreuil C, François B, Clavel M, et al (2008) Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study. Intensive Care Med 34:250–6

    Article  PubMed  Google Scholar 

  45. Jardin F, Fourme T, Page B, et al (1999) Persistent preload defect in severe sepsis despite fluid loading. A longitudinal echocardiographic study in patients with septic shock. Chest 116:1354–9

    Article  CAS  PubMed  Google Scholar 

  46. Sturgess DJ, Marwick TH, Joyce C, et al (2010) Prediction of hospital outcome in septic shock: a prospective comparison of tissue Doppler and cardiac biomarkers. Crit Care 14:R44

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vignon P (2013) Ventricular diastolic abnormalities in the critically ill. Curr Opin Crit Care 19:242–9

    Article  PubMed  Google Scholar 

  48. Pulido JN, Afessa B, Masaki M, et al (2012) Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc 87:620–8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bouhemad B, Nicolas-Robin A, Arbelot C, et al (2008) Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med 36:766–74

    Article  PubMed  Google Scholar 

  50. Mahjoub Y, Benoit-Fallet H, Airapetian N, et al (2012) Improvement of left ventricular relaxation as assessed by tissue Doppler imaging in fluid-responsive critically ill septic patients. Intensive Care Med 38:1461–70

    Article  PubMed  Google Scholar 

  51. Mokart D, Sannini A, Brun JP, et al (2007) N-terminal pro-brain natriuretic peptide as an early prognostic factor in cancer patients developing septic shock. Crit Care 11:R37

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mourad M, Chow-Chine L, Faucher M, et al (2014) Early diastolic dysfunction is associated with intensive care unit mortality in cancer patients presenting with septic shock. Br J Anaesth 112:102–9

    Article  CAS  PubMed  Google Scholar 

  53. Ouellette DR, Shah SZ (2014) Comparison of outcomes from sepsis between patients with and without pre-existing left ventricular dysfunction: a case-control analysis. Crit Care 18:R79

    Article  PubMed  PubMed Central  Google Scholar 

  54. Parker MM, McCarthy KE, Orgibene FP, Parrillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–31

    Article  CAS  PubMed  Google Scholar 

  55. Kimchi A, Ellrodt AG, Berman DS, et al (1984) Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 4:945–51

    Article  CAS  PubMed  Google Scholar 

  56. Marland AM, Glauser FL (1982) Significance of the pulmonary artery diastolic-pulmonary wedge pressure gradient in sepsis. Crit Care Med 10:658–61

    Article  CAS  PubMed  Google Scholar 

  57. Ruiz Bailen M (2002) Reversible myocardial dysfunction in critically ill, non-cardiac patients: a review. Crit Care Med 30:1280–90

    Article  PubMed  Google Scholar 

  58. Boyd JH, Forbes J, Nakada T, et al (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–65

    Article  PubMed  Google Scholar 

  59. Morelli A, Ertmer C, Westphal M, et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–91

    Article  PubMed  Google Scholar 

  60. Ranieri M, Thompson BT, Barie PS, et al (2012). Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366:2055–64

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vignon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begot, E., Vignon, P. Dysfonction cardiaque au cours du sepsis : mythe ou réalité ?. Réanimation 25, 340–347 (2016). https://doi.org/10.1007/s13546-015-1166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-015-1166-z

Mots clés

Keywords

Navigation