Skip to main content

Advertisement

Log in

Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Conventional echocardiography may not detect subtle cardiac dysfunction of septic patients. Two-dimensional left ventricular (LV) global peak systolic longitudinal strain (GLS) can detect early cardiac dysfunction. We sought to determine the prognostic value of GLS for septic shock patients admitted to intensive care units (ICUs).

Methods

We prospectively included 111 ICU patients with septic shock. A full medical history was recorded for each patient, and LV systolic function, including GLS, was measured. Our endpoints were ICU and hospital mortality.

Results

The ICU and hospital mortalities were 31.5 % (n = 35) and 35.1 % (n = 39), respectively. There was no significant difference in LV ejection fraction of the non-survivors and the survivors; however, upon ICU admission, the non-survivors exhibited GLSs that were less negative than those of the survivors, which indicated worse LV systolic function. GLS of −13 % presented the best sensitivity and specificity in the prediction of mortality (area under the curve 0.79). The patients with GLS ≥ −13 % exhibited higher ICU and hospital mortality rates (hazard ratio 4.34, p < 0.001 and hazard ratio 4.21, p < 0.001, respectively). Cox regression analyses revealed that higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores and less negative GLSs were independent predictors of ICU and hospital mortalities. GLS was found to add prognostic information to the APACHE II score.

Conclusions

These findings suggest that combining GLS and the APACHE II score has additive value in the prediction of ICU and hospital mortalities and that GLS may help in early identification of high-risk septic shock patients in ICU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Citerio G, Bakker J, Bassetti M, Benoit D, Cecconi M, Curtis JR, Hernandez G, Herridge M, Jaber S, Joannidis M, Papazian L, Peters M, Singer P, Smith M, Soares M, Torres A, Vieillard-Baron A, Timsit JF, Azoulay E (2014) Year in review in Intensive Care Medicine 2013: I. Acute kidney injury, ultrasound, hemodynamics, cardiac arrest, transfusion, neurocritical care, and nutrition. Intensive Care Med 40:147–159

    Article  PubMed  Google Scholar 

  2. Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1:6

    Article  PubMed Central  PubMed  Google Scholar 

  3. Zanotti-Cavazzoni SL, Hollenberg SM (2009) Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care 15:392–397

    Article  PubMed  Google Scholar 

  4. Ammann P, Fehr T, Minder EI, Günter C, Bertel O (2001) Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27:965–969

    Article  CAS  PubMed  Google Scholar 

  5. Giroir BP, Stromberg D (2000) Myocardial depression versus myocardial destruction: integrating the multiple mechanisms of myocardial dysfunction during sepsis. Crit Care Med 28:3111–3112

    Article  CAS  PubMed  Google Scholar 

  6. Ognibene FP, Cunnion RE (1993) Mechanisms of myocardial depression in sepsis. Crit Care Med 21:6–8

    Article  CAS  PubMed  Google Scholar 

  7. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  8. Siddiqui Y, Crouser ED, Raman SV (2013) Nonischemic myocardial changes detected by cardiac magnetic resonance in critical care patients with sepsis. Am J Respir Crit Care Med 188:1037–1039

    Article  PubMed Central  PubMed  Google Scholar 

  9. Abdel-Hady HE, Matter MK, El-Arman MM (2012) Myocardial dysfunction in neonatal sepsis: a tissue doppler imaging study. Pediatr Crit Care Med 13:318–323

    Article  PubMed  Google Scholar 

  10. Liu YW, Tsai WC, Su CT, Lin CC, Chen JH (2009) Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction. J Card Fail 15:782–789

    Article  PubMed  Google Scholar 

  11. Basu S, Frank LH, Fenton KE, Sable CA, Levy RJ, Berger JT (2012) Two-dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 13:259–264

    Article  PubMed  Google Scholar 

  12. Basu S, Frank LH, Fenton KE, Sable CA, Levy RJ, Berger JT (2011) Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol 33:84–90

    Article  Google Scholar 

  13. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100(21):1673–1680

    Article  PubMed  Google Scholar 

  14. Mignot A, Donal E, Zaroui A, Reant P, Salem A, Hamon C, Monzy S, Roudaut R, Habib G, Lafitte S (2010) Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J Am Soc Echocardiogr 23:1019–1024

    Article  PubMed  Google Scholar 

  15. Liu YW, Su CT, Sung JM, Wang SP, Su YR, Yang CS, Tsai LM, Chen JH, Tsai WC (2013) Association of left ventricular longitudinal strain with mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Clin J Am Soc Nephrol 8:1564–1574

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  18. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  19. McLean AS (2012) Down but not out: myocardial depression in sepsis. Crit Care 16:132

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zhang H, Wang HY, Bassel-Duby R, Maass DL, Johnston WE, Horton JW, Tao W (2007) Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. Am J Physiol Heart Circ Physiol 292:H2408–H2416

    Article  CAS  PubMed  Google Scholar 

  21. Supinski GS, Callahan LA (2006) Hemin prevents cardiac and diaphragm mitochondrial dysfunction in sepsis. Free Radic Biol Med 40:127–137

    Article  CAS  PubMed  Google Scholar 

  22. Celes MR, Torres-Dueñas D, Prado CM, Campos EC, Moreira JE, Cunha FQ, Rossi MA (2010) Increased sarcolemmal permeability as an early event in experimental septic cardiomyopathy: a potential role for oxidative damage to lipids and proteins. Shock 33:322–331

    Article  PubMed  Google Scholar 

  23. Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, Bhayani SB, Drewry A, Swanson PE, Hotchkiss RS (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zang QS, Martinez B, Yao X, Maass DL, Ma L, Wolf SE, Minei JP (2012) Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 7:e43424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fuller BM, Mohr NM, Graetz TJ, Lynch IP, Dettmer M, Cullison K, Coney T, Gogineni S, Gregory R (2015) The impact of cardiac dysfunction on acute respiratory distress syndrome and mortality in mechanically ventilated patients with severe sepsis and septic shock: an observational study. J Crit Care 30:65–70

    Article  PubMed  Google Scholar 

  26. Fernandes CJ Jr, Akamine N, Knobel E (2008) Myocardial depression in sepsis. Shock 30(Suppl 1):14–17

    Article  CAS  PubMed  Google Scholar 

  27. Rossi MA, Celes MR, Prado CM, Saggioro FP (2007) Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 27:10–18

    Article  CAS  PubMed  Google Scholar 

  28. Burns AT, La Gerche A, D’hoopge J, Maclsaac AI, Prior DL (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11:283–289

    Article  PubMed  Google Scholar 

  29. Liu YW, Su CT, Huang YY, Yang CS, Huang JW, Tang MT, Chen JH, Tsai WC (2011) Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol 33:84–90

    Article  CAS  PubMed  Google Scholar 

  30. Orde SR, Pulido JN, Masaki M, Gillespie S, Spoon JN, Kane GC, Oh JK (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bertini M, Ng AC, Antoni ML, Nucifora G, Ewe SH, Auger D, Marsan NA, Schalij MJ, Bax JJ, Delgado V (2012) Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging 5:383–391

    Article  PubMed  Google Scholar 

  32. Gjesdal O, Hopp E, Vartdal T, Lunde K, Helle-Valle T, Aakhus S, Smith HJ, Ihlen H, Edvardsen T (2007) Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci 113:287–296

    Article  PubMed  Google Scholar 

  33. Chumakova OS, Tipteva TA, Alekhin MN, Zateĭshchikov DA (2014) Degenerative aortic stenosis: prediction of poor prognosis by 2D left ventricular longitudinal strain in non-operated patients. Kardiologiia 54:29–36

    CAS  PubMed  Google Scholar 

  34. López-Candales A (2014) Automated functional imaging for assessment of left ventricular mechanics in the presence of left ventricular hypertrophy. Echocardiography 31:605–614

    Article  PubMed  Google Scholar 

  35. Nagata Y, Takeuchi M, Wu VC, Izumo M, Suzuki K, Sato K, Seo Y, Akashi YJ, Aonuma K, Otsuji Y (2015) Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC Cardiovasc Imaging 8:235–245

    Article  PubMed  Google Scholar 

  36. Li T, Liu JJ, Du WH, Wang X, Chen ZQ, Zhang LC (2014) 2D speckle tracking imaging to assess sepsis induced early systolic myocardial dysfunction and its underlying mechanisms. Eur Rev Med Pharmacol Sci 18:3105–3114

    CAS  PubMed  Google Scholar 

  37. Vasile VC, Chai HS, Abdeldayem D, Afessa B, Jaffe AS (2013) Elevated cardiac troponin T levels in critically ill patients with sepsis. Am J Med 126:1114–1121

    Article  CAS  PubMed  Google Scholar 

  38. Post F, Weilemann LS, Messow CM, Sinning C, Münzel T (2008) B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Cric Care Med 36:3030–3037

    Article  CAS  Google Scholar 

  39. Anand A, Kumar N, Gambhir IS, Kishore D, Varshney AN, Tiwari A (2013) Role of serum HsCRP as prognostic markers in septicemia in elderly population. Int J Med Sci Public Health 2:290–292

    Google Scholar 

  40. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, DeCara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhães A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 15:1063–10931

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Cheng Kung University Hospital. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yen-Wen Liu or Wei-Chuan Tsai.

Ethics declarations

Conflicts of interest

None declared.

Additional information

W.-T. Chang and W.-H. Lee equally contribute to this work.

Take-home message: In addition to APACHE II score, left ventricular longitudinal strain provides prognostic information as an outcome predictor for mortality of septic patients in ICU. This study will help clinical practitioners in evaluating the severity of disease and initiating early interventions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Supplementary material 2 (TIFF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WT., Lee, WH., Lee, WT. et al. Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med 41, 1791–1799 (2015). https://doi.org/10.1007/s00134-015-3970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-015-3970-3

Keywords

Navigation