Skip to main content
Log in

Bump-on-Tail Instability in Cairns Distributed Plasma

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The growing rate of bump-on-tail instability has been investigated in unmagnetized plasma with Cairns distribution. The growing rate depends significantly on the number density ratio n1/n2, temperature ratio T1/T2, and the nonthermal parameter α. The influence of these parameters on the maximum growing rate is analyzed numerically by using solar data. The higher α can enhance the growing rate of bump-on-tail instability. The maximum growth rate also will increase with the decrease of number density ratio n1/n2 and the increase of temperature ratio T1/T2. These interesting results will be helpful for understanding some phenomena in space plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. N.A. Krall, A.W. Trivelpiece, Principles of plasma physics (McGraw Hill, New York, 1973)

    Book  Google Scholar 

  2. K. Papadopoulos, M.L. Goldstein, R.A. Smith, Stabilization of electron streams in type III solar radio bursts. Astrophys. J. 190, 175 (1974). https://doi.org/10.1086/152862

    Article  ADS  Google Scholar 

  3. H.P. Freund, R.A. Smith, K. Papadopoulos, Modulational instability in a plasma with suprathermal electrons. Phys. Fluids 24, 442 (1981). https://doi.org/10.1063/1.863390

    Article  ADS  Google Scholar 

  4. A.J. Klimas, R.J. Fitzenreiter, On the persistence of unstable bump-on-tail electron velocity distributions in the Earth’s foreshock. J. Geophys. Res. 93, 9628 (1988). https://doi.org/10.1029/JA093iA09p09628

    Article  ADS  Google Scholar 

  5. F. Valentini, P. Veltri, Effect of velocity diffusion on the propagation of nonlinear plasma waves Europhys. Lett. 81, 150012 (2008). https://doi.org/10.1209/0295-5075/81/15002

    Article  Google Scholar 

  6. I. Zouganelis, Measuring suprathermal electron parameters in space plasmas: implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res. 113, A08111 (2008). https://doi.org/10.1029/2007JA012979

    Article  ADS  Google Scholar 

  7. J. Du, Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262 (2004). https://doi.org/10.1016/j.physleta.2004.07.010

    Article  ADS  Google Scholar 

  8. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968). https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  9. M.N.S. Qureshi, S.H.I. Jian-Kui, M.A. Shi-Zhuang, Influence of generalized (r, q) distribution function on electrostatic waves. Theor. Phys. 45, 550 (2006). https://doi.org/10.1088/0253-6102/45/3/034

    Article  ADS  Google Scholar 

  10. R.A. Cairns, R. Bingham, R.O. Dendy et al., Ion sound solitary waves with density depressions. Le J. de Phys. IV 5, 6 (1995). https://doi.org/10.1051/jp4:1995608

    Article  Google Scholar 

  11. Z. Liu, L. Liu, J. Du, A nonextensive approach for the instability of current-driven ion-acoustic waves in space plasmas Phys. Plasmas 16, 072111 (2009). https://doi.org/10.1063/1.3176516

    Article  ADS  Google Scholar 

  12. J. Du, Transport coefficients in Lorentz plasmas with the power-law kappa distribution. Phys. Plasmas 20, 092901 (2013). https://doi.org/10.1063/1.4820799

    Article  Google Scholar 

  13. S. Sarkar, S. Paul, R. Denra, Bump-on-tail instability in space plasmas. Phys. Plasmas 22, 102109 (2015). https://doi.org/10.1063/1.4933041

    Article  ADS  Google Scholar 

  14. N. Noreen, A. Shiekh, I. Habumugisha, S. Zaheer, H. Shah, Linear analysis of bump on tail instability with non-Maxwellian distribution function. Plasma Res. Express 2, 025006 (2020). https://doi.org/10.1088/2516-1067/ab8e2b

    Article  ADS  Google Scholar 

  15. K. Issautier, C. Perche, S. Hoang, C. Lacombe, M. Maksimovic, J. Bougeret, C. Salem, Solar wind electron density and temperature over solar cycle 23: thermal noise measurements on wind. Adv. Space Res. 35, 2141 (2005). https://doi.org/10.1016/j.asr.2005.04.085

    Article  ADS  Google Scholar 

  16. K. Issautier, G. Le Chat, N. Meyer-Vernet, M. Moncuquet, S. Hoang, R.J. MacDowall, D.J. McComas, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: not so dense, not so hot. Geophys. Res. Lett. 35, 19101 (2008). https://doi.org/10.1029/2008GL034912

    Article  ADS  Google Scholar 

  17. M. Usman Malik, W. Masood, Arshad M. Mirza, Unique features of parallel whistler instability in a plasma with anisotropic Cairns distribution. Phys. Plasmas 24, 102120 (2017). https://doi.org/10.1063/1.4998774

    Article  ADS  Google Scholar 

  18. I.A. Khan, Z. Iqbal, H. Naim, G. Murtaza, Obliquely propagating magnetosonic waves in a plasma modeled by bi-anisotropic Cairns distribution. Phys. Plasmas 25, 082111 (2018). https://doi.org/10.1063/1.5046556

    Article  ADS  Google Scholar 

  19. F. Verheest, S.R. Pillay, Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas. Phys. Plasmas 15, 013703 (2008). https://doi.org/10.1063/1.2831025

    Article  ADS  Google Scholar 

  20. R. Sabry, W.M. Moslem, P.K. Shukla, Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons. Phys. Plasmas 16, 032302 (2009). https://doi.org/10.1063/1.3088005

    Article  ADS  Google Scholar 

  21. F. Hadi, A.U.R. Ata-Ur-Rahman, A. Qamar, Landau damping of electrostatic modes in nonthermal plasmas. Phys. Plasmas 24, 104503 (2017). https://doi.org/10.1063/1.5006802

    Article  ADS  Google Scholar 

  22. M. Aman-ur-Rehman, M. Ahmad, M. Shahzad, Revisiting some analytical and numerical interpretations of Cairns and Kappa-Cairns distribution functions. Phys. Plasmas 27, 100901 (2020). https://doi.org/10.1063/5.0018906

    Article  ADS  Google Scholar 

  23. K. Issautier, N.M. Vernet, M. Moncuquet, S. Hoang, Solar wind radial and latitudinal structure: electron density and core temperature from Ulysses thermal noise spectroscopy. J. Geophys. Res. 103, 1969 (1998). https://doi.org/10.1029/97JA02661

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

all authors wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Huo Rui.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The real part of the dispersion relation is expressed as

$$D_{r} (k,\omega_{r} ) = 1 + \frac{{\omega_{{p{\text{e}}}}^{2} }}{{k^{2} }}\int_{ - \infty }^{\infty } {\frac{{\partial f_{e0} /\partial v_{z} }}{{\omega_{r} /k - v_{z} }}} dv_{z} = 0$$
(A1)

For electrons, in the case \(\omega /kv_{T} \gg 1\), the integral term in the dispersion relation can be approximated as

$$\int^{\infty}_{-\infty} {\frac{{\partial f_{e0} /\partial v_{z} }}{{\omega_{r} /k - v_{z} }}} dv_{z} = \int_{ - \infty }^{\infty } {\frac{{\partial f_{e0} }}{{\partial v_{z} }}\left( {\frac{k}{{\omega_{r} }} + \frac{{k^{2} v_{z} }}{{\omega {}_{r}^{2} }} + \frac{{k^{3} v_{z}^{2} }}{{\omega {}_{r}^{3} }} + \cdots } \right)} dv_{z}$$
(A2)
$$\begin{array}{l} \frac{{\partial f_{e0} }}{{\partial v_{z} }} = \frac{1}{{n_{e} }}\frac{1}{{(1 + 3\alpha )\left( {2\pi } \right)^{1/2} v_{T1} }}\left( {n_{1} \left\{ {4\frac{{\alpha v_{z}^{3} }}{{v_{T1}^{4} }}\exp \left( { - \frac{{v_{z}^{2} }}{{2v_{T1}^{2} }}} \right) - \frac{{v_{z} }}{{v_{T1}^{2} }}\left( {1 + \alpha \frac{{v_{z}^{4} }}{{v_{T1}^{4} }}} \right)\exp \left( { - \frac{{v_{z}^{2} }}{{2v_{T1}^{2} }}} \right)} \right\}} \right. + \hfill \\ \frac{{n_{2} }}{2}\frac{{v_{T1} }}{{v_{T2} }}\left\{ {4\frac{{\alpha \left( {v_{z} - v_{0} } \right)^{3} }}{{v_{T2}^{4} }}\exp \left( { - \frac{{\left( {v_{z} - v_{0} } \right)^{2} }}{{2v_{T2}^{2} }}} \right) - \frac{{\left( {v_{z} - v_{0} } \right)}}{{v_{T2}^{2} }}\left( {1 + \alpha \frac{{\left( {v_{z} - v_{0} } \right)^{4} }}{{v_{T2}^{4} }}} \right)\exp \left( { - \frac{{\left( {v_{z} - v_{0} } \right)^{2} }}{{2v_{T2}^{2} }}} \right) + } \right. \hfill \\ \left. {\left. {4\frac{{\alpha \left( {v_{z} - v_{0} } \right)^{3} }}{{v_{T2}^{4} }}\exp \left( { - \frac{{\left( {v_{z} - v_{0} } \right)^{2} }}{{2v_{T2}^{2} }}} \right) - \frac{{\left( {v_{z} - v_{0} } \right)}}{{v_{T2}^{2} }}\left( {1 + \alpha \frac{{\left( {v_{z} - v_{0} } \right)^{4} }}{{v_{T2}^{4} }}} \right)\exp \left( { - \frac{{\left( {v_{z} - v_{0} } \right)^{2} }}{{2v_{T2}^{2} }}} \right)} \right\}} \right) \hfill \\ \end{array}$$
(A3)

Combining Eq. (A2) and (A3), we can get

$$\int^{\infty}_{-\infty} {\frac{{\partial f_{e0} /\partial v_{z} }}{{\omega_{r} /k - v_{z} }}} dv_{z} = \int^{\infty}_{-\infty} {\frac{{\partial f_{e0} }}{{\partial v_{z} }}\left( {\frac{k}{{\omega_{r} }} + \frac{{k^{2} v_{z} }}{{\omega {}_{r}^{2} }} + \frac{{k^{3} v_{z}^{2} }}{{\omega {}_{r}^{3} }} + \cdots } \right)} dv_{z}$$
$$\begin{array}{l} = - \frac{{n_{1} }}{{n_{e} }}\left( {\frac{{k^{2} }}{{\omega_{r}^{2} }}{ + }\frac{{3\left( {1 + 15\alpha } \right)}}{1 + 3\alpha }\frac{{k^{4} v_{T1}^{2} }}{{\omega_{r}^{4} }}} \right) - \frac{{n_{2} }}{{2n_{e} }}\left( {\frac{{2k^{2} }}{{\omega_{r}^{2} }} + \frac{{6\left( {1 + 15\alpha } \right)}}{1 + 3\alpha }\frac{{k^{4} v_{T2}^{2} }}{{\omega_{r}^{4} }}} \right) \hfill \\ = - \frac{{n_{1} }}{{n_{e} }}\frac{{k^{2} }}{{\omega_{r}^{2} }} - \frac{{n_{2} }}{{n_{e} }}\frac{{k^{2} }}{{\omega_{r}^{2} }} - \frac{{n_{1} }}{{n_{e} }}\frac{{3\left( {1 + 15\alpha } \right)}}{1 + 3\alpha }\frac{{k^{4} v_{T1}^{2} }}{{\omega_{r}^{4} }} - \frac{{n_{2} }}{{n_{e} }}\frac{{3\left( {1 + 15\alpha } \right)}}{1 + 3\alpha }\frac{{k^{4} v_{T2}^{2} }}{{\omega_{r}^{4} }} \hfill \\ \end{array}$$
(A4)

Assuming the cases, i.e., \(n_{1} \gg n_{2}\), \(n_{1} T_{1} \gg n_{2} m_{e} v_{0}^{2}\), then we can get

$$D_{r} (k,\omega_{r} ) = 1 - \frac{{n_{1} }}{{n_{e} }}\frac{{\omega_{{p{\text{e}}}}^{2} }}{{\omega_{r}^{2} }} - \frac{{n_{1} }}{{n_{e} }}\frac{{3\left( {1 + 15\alpha } \right)}}{(1 + 3\alpha )}k^{2} v_{{T{1}}}^{2} \frac{{\omega_{{p{\text{e}}}}^{{2}} }}{{\omega_{r}^{4} }} = 0$$
(A5)
$$D_{r} (k,\omega_{r} ) = 1 - \frac{{\omega_{{p{1}}}^{2} }}{{\omega_{r}^{2} }} - \frac{{3\left( {1 + 15\alpha } \right)}}{(1 + 3\alpha )}k^{2} \lambda_{{D{1}}}^{2} \frac{{\omega_{{p{1}}}^{4} }}{{\omega_{r}^{4} }} = 0$$
(A6)

where we have used \(\lambda_{{D{1}}}^{2} = v_{{T{1}}}^{2} /\omega_{{p{1}}}^{{2}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, H., Hong, W. Bump-on-Tail Instability in Cairns Distributed Plasma. Braz J Phys 54, 111 (2024). https://doi.org/10.1007/s13538-024-01481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01481-3

Keywords

Navigation