Skip to main content
Log in

Parameters Influencing the Absorbance of Gold-Silver Alloy Nanomaterials Using the Pulsed Laser Ablation in Liquid (PLAL) Approach: a Review

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Laser ablation is one of the promising methods that can be used to synthesize nanomaterials and improve the surface plasmon resonance (SPR) of gold-silver alloy nanomaterials. Parameters (laser wavelength, exposure time, laser pulse duration, repetition rate, and energy density of laser) and medium of ablation ambient parameters (mixing ratio, liquid, and ambient gas) could affect the formation and SPR of gold-silver alloy nanomaterials. The parameters that can affect the synthesis of Au–Ag alloy nanomaterials were energy density, SPR, laser wavelength, and pulse repetition rate. The method of using ambient gas instead of liquid was known as pulsed laser ablation deposition (PLAD). It is the simplest way to change the SPR by adjusting the pressure of the gas in the atmosphere. Finally, this review provided useful knowledge for newcomers and scholars and good references to conduct future laboratory works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S. Lee, H.J. Jung, H.C. Choi, Y.S. Hwang, M.Y. Choi, Solvent acting as a precursor, synthesis of AgCN from AgNO3 in N, N-DMF solvent by laser ablation. Bull. Chem. Soci. 38, 136–139 (2017)

    Article  Google Scholar 

  2. H. Naser, M. Alghoul, M.K. Hossain, N. Asim, M. Abdullah, M.S. Ali, F.G. Alzubi, N. Amin, The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. J. Nano. Rese. 21, 1–28 (2019)

    Google Scholar 

  3. M. Navas, R. Soni, Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor. Appl. Phys. A 116, 879–886 (2014)

    Article  ADS  Google Scholar 

  4. H. Naser, H. M. Shanshool, K.I. Imhan, Parameters affecting the size of gold nanoparticles prepared by pulsed laser ablation in liquid, Brazili. J. Phys. 1–21 (2021)

  5. M. Mardis, N. Takada, H. Kanda, M. Goto, Formation of Au–carbon nanoparticles by laser ablation under pressurized CO2. Asia Pac. J. Chem. Eng. 13, e2176 (2018)

  6. O. Prymak, J. Jakobi, C. Rehbock, M. Epple, S. Barcikowski, Crystallographic characterization of laser-generated, polymer-stabilized 4 nm silver-gold alloyed nanoparticles. Mater. Chem. Phys. 207, 442–450 (2018)

    Article  Google Scholar 

  7. T. Wu, J. Ma, X. Wang, Y. Liu, H. Xu, J. Gao, W. Wang, Y. Liu, J. Yan, Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotech. 24, 125301 (2013)

  8. R.B. Rashid, Preparation of Au-Ag composite Nanoparticles by Pulsed Laser Ablation in Water for controlling of AIP enzyme Activity in human blood. J. Coll. Basic Educ. 25, 23–36 (2019)

    Article  Google Scholar 

  9. M.A. Al-Azawi, N. Bidin, M. Bououdina, S.M. Mohammad, Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol. Energy 126, 93–104 (2016)

    Article  ADS  Google Scholar 

  10. E. Messina, L. D’Urso, E. Fazio, C. Satriano, M. Donato, C. D’Andrea, O. Maragò, P. Gucciardi, G. Compagnini, F. Neri, Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping. J. Quant. Spectro. Radi. Transf. 113, 2490–2498 (2012)

    Article  ADS  Google Scholar 

  11. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, Laser-assisted synthesis of Au−Ag alloy nanoparticles in solution. J. Phys. Chem. B 110, 2549–2554 (2006)

    Article  Google Scholar 

  12. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications. Phys. Chem. Chem. Phys. 15, 3075–3082 (2013)

    Article  Google Scholar 

  13. R. Fathima, A. Mujeeb, Nonlinear optical investigations of laser generated gold, silver and gold-silver alloy nanoparticles and optical limiting applications. J. Alloys. Comp. 858, 157667 (2021)

  14. G.N.W. Shukri, N. Bidin, S. Islam, G. Krishnan, Synthesis of Au–Ag Alloy Nanoparticles in Deionized Water by Pulsed Laser Ablation Technique. J. Nanosci. Nanotech. 11, 4841–4851 (2018)

    Google Scholar 

  15. A. Izgaliev, A. Simakin, G. Shafeev, F. Bozon-Verduraz, Intermediate phase upon alloying Au–Ag nanoparticles under laser exposure of the mixture of individual colloids. Chem. Phys. Lett. 390, 467–471 (2004)

  16. P. Jafarkhani, M. Torkamany, S. Dadras, A. Chehrghani, J. Sabbaghzadeh, Necklace-shaped Au–Ag nanoalloys: laser-assisted synthesis and nonlinear optical properties. Nanotechn. 22, 235703 (2011)

  17. A. Menéndez-Manjón, A. Schwenke, T. Steinke, M. Meyer, U. Giese, P. Wagener, S. Barcikowski, Ligand-free gold–silver nanoparticle alloy polymer composites generated by picosecond laser ablation in liquid monomer. Appl. Phys. A 110, 343–350 (2013)

    Article  ADS  Google Scholar 

  18. M. Heinz, V.V. Srabionyan, L.A. Avakyan, A.L. Bugaev, A.V. Skidanenko, S.Y. Kaptelinin, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, Formation of bimetallic gold-silver nanoparticles in glass by UV laser irradiation. J. Alloys Comp. 767, 1253–1263 (2018)

    Article  Google Scholar 

  19. S. Dengler, C. Kübel, A. Schwenke, G. Ritt, B. Eberle, Near-and off-resonant optical limiting properties of gold–silver alloy nanoparticles for intense nanosecond laser pulses, J. Opti. 14, 075203 (2012)

  20. M. Heinz, V.V. Srabionyan, L.A. Avakyan, A.L. Bugaev, A.V. Skidanenko, V.V. Pryadchenko, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, Formation and implantation of gold nanoparticles by ArF-excimer laser irradiation of gold-coated float glass. J. Alloys Comp. 736, 152–162 (2018)

    Article  Google Scholar 

  21. G. Compagnini, E. Messina, O. Puglisi, V. Nicolosi, Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition. Appl. Surf. Sci. 254, 1007–1011 (2007)

    Article  ADS  Google Scholar 

  22. J. González-Castillo, E. Rodriguez-Gonzalez, E. Jiménez-Villar, C.L. Cesar, J.A. Andrade-Arvizu, Assisted laser ablation: silver/gold nanostructures coated with silica. Appl. Nano. 7, 597–605 (2017)

    Article  ADS  Google Scholar 

  23. R. Fathima, A. Mujeeb, Nonlinear optical investigations of laser generated gold, silver and gold-silver alloy nanoparticles and optical limiting applications. J. Alloys Comp. 858, 157667 (2021)

  24. A. Hidayah, D. Triyono, Y. Herbani, M. Suliyanti, Effect of irradiation time in the synthesis of Au-Ag nanoalloys by femtosecond laser, in Journal of Physics: Conference Series, (IOP Publishing, 2019), pp. 012064

  25. A. Hidayah, D. Triyono, Y. Herbani, M. Suliyanti, Effect of ablation time on femtosecond laser synthesis of Au-Ag colloidal nanoalloys, in  Journal of Physics: Conference Series, (IOP Publishing, 2018), pp. 012008

  26. A.A. Serkov, P.G. Kuzmin, G.A. Shafeev, Laser-induced agglomeration of gold and silver nanoparticles dispersed in liquid. Chem. Phys. Lett. 647, 68–72 (2016)

    Article  ADS  Google Scholar 

  27. A.M. Mostafa, E.A. Mwafy, N.S. Awwad, H.A. Ibrahium, Catalytic activity of Ag nanoparticles and Au/Ag nanocomposite prepared by pulsed laser ablation technique against 4-nitrophenol for environmental applications. J. Mater. Sci.: Mate. Electr. 32, 11978–11988 (2021)

  28. R. Mahfouz, F.C.S. Aires, A. Brenier, E. Ehret, M. Roumié, B. Nsouli, B. Jacquier, J. Bertolini, Elaboration and characterization of bimetallic nanoparticles obtained by laser ablation of Ni 75 Pd 25 and Au 75 Ag 25 targets in water. J. Nano. Rese. 12, 3123–3136 (2010)

    Article  Google Scholar 

  29. E. Fazio, R. Saija, M. Santoro, S. Abir, F. Neri, M. Tommasini, P.M. Ossi, On the optical properties of Ag–Au colloidal alloys pulsed laser ablated in liquid: experiments and theory. J. Phys. Chem. C 124, 24930–24939 (2020)

    Article  Google Scholar 

  30. A. Hidayah, Y. Herbani, Tuning localized surface plasmon resonance (LSPR) of Au-Ag nanoalloys by femtosecond laser, in Journal of Physics: Conference Series, (IOP Publishing, 2020), pp. 012107

  31. A.K. Ali, Preparation of Ag and Au nanoparticles by pulsed laser ablation in liquid, the School of Applied Sciences (University of Technology, Iraq, Baghdad, 2010)

    Google Scholar 

  32. C. Byram, S.S.B. Moram, V.R. Soma, Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer, in AIP Conference Proceedings, (AIP Publishing LLC, 2018), pp. 050028

  33. I. Lee, S.W. Han, K. Kim, Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun. 1782–1783 (2001)

  34. S.S.B. Moram, A.K. Shaik, C. Byram, S. Hamad, V.R. Soma, Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag–Au alloy nanoparticles using the SERS technique. Analy. chim. acta 1101, 157–168 (2020)

    Article  Google Scholar 

  35. S. Qu, Y. Zhang, H. Li, J. Qiu, C. Zhu, Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser. Opti. Mater. 28, 259–265 (2006)

    Article  ADS  Google Scholar 

  36. S. Besner, M. Meunier, Femtosecond laser synthesis of AuAg nanoalloys: photoinduced oxidation and ions release. J. Phys. Chem. 114, 10403–10409 (2010)

    Google Scholar 

  37. C. Byram, V.R. Soma, 2, 4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures. Nano-Struct. Nano-Obje. 12, 121–129 (2017)

    Article  Google Scholar 

  38. A.-M. Dallaire, D. Rioux, A. Rachkov, S. Patskovsky, M. Meunier, Laser-generated Au–Ag nanoparticles for plasmonic nucleic acid sensing. J. Phys. Chem. C 116, 11370–11377 (2012)

    Article  Google Scholar 

  39. A. Hatef, B. Darvish, A. Dagallier, Y.R. Davletshin, W. Johnston, J.C. Kumaradas, D. Rioux, M. Meunier, Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 119, 24075–24080 (2015)

    Article  Google Scholar 

  40. J.-W. Jeon, S. Yoon, H.W. Choi, J. Kim, D. Farson, S.-H. Cho, The effect of laser pulse widths on laser—Ag nanoparticle interaction: femto-to nanosecond lasers. Appl. Sci. 8, 112 (2018)

    Article  Google Scholar 

  41. K. Krishnakanth, B. Chandu, M. Bharathi, S.S.K. Raavi, S.V. Rao, Ultrafast excited state dynamics and femtosecond nonlinear optical properties of laser fabricated Au and Ag50Au50 nanoparticles. Opti. Mater. 95, 109239 (2019)

  42. S. Scaramuzza, Laser ablation synthesis in solution and characterization of magnetic-plasmonic alloy nanoparticles. Università degli Studi di Padova, Ph.D. thesis. (2016)

  43. R. Kuladeep, L. Jyothi, K.S. Alee, K. Deepak, D.N. Rao, Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opti. Mater. Expr. 2, 161–172 (2012)

    Article  ADS  Google Scholar 

  44. O. Olea-Mejía, M. Fernández-Mondragón, G. Rodríguez-de la Concha, M. Camacho-López, SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue. Appl. Surf. Sci. 348, 66–70 (2015)

    Article  Google Scholar 

  45. M. Ganjali, M. Ganjali, S. Khoby, M.A. Meshkot, Synthesis of Au-Cu nano-alloy from monometallic colloids by simultaneous pulsed laser targeting and stirring. Nano. Micro. Lett. 3, 256–263 (2011)

    Article  Google Scholar 

  46. Y. Herbani, Isnaeni, Irmaniar, M.R. Ihsan, Y.P. Putra, T.E. Saraswati, Colloidal Au and Au/Ag nanoparticles prepared by laser ablation in liquid as a substrate of surface enhanced Raman scattering (SERS) in ascorbic acid detection, in AIP Conference Proceedings, (AIP Publishing LLC, 2020), pp. 020012

  47. I. Papagiannouli, P. Aloukos, D. Rioux, M. Meunier, S. Couris, Effect of the composition on the nonlinear optical response of Au x Ag1–x nano-alloys. J. Phys. Chem. C 119, 6861–6872 (2015)

    Article  Google Scholar 

  48. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Laser-induced damage thresholds of gold, silver and their alloys in air and water. Appl. Surf. Sci. 396, 1765–1774 (2017)

    Article  ADS  Google Scholar 

  49. M.Z. Shoushtari, C.R. Nezhad, K. Omidfar, Fabrication and optical properties of Ag-Au alloy nanoparticles, Indian J. Sci. Technol. 9 (2016)

  50. G.K. Podagatlapalli, S. Hamad, S.V. Rao, Trace-level detection of secondary explosives using hybrid silver–gold nanoparticles and nanostructures achieved with femtosecond laser ablation. J. Phys. Chem. C 119, 16972–16983 (2015)

    Article  Google Scholar 

  51. E. Csapó, A. Oszkó, E. Varga, Á. Juhász, N. Buzás, L. Kőrösi, A. Majzik, I. Dékány, Synthesis and characterization of Ag/Au alloy and core (Ag)–shell (Au) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 415, 281–287 (2012)

  52. J.-H. Liu, A.-Q. Wang, Y.-S. Chi, H.-P. Lin, C.-Y. Mou, Synergistic effect in an Au− Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 109, 40–43 (2005)

    Article  Google Scholar 

  53. A. Shah, S.B. Khan, A.M. Asiri, H. Hussain, C. Han, R. Qureshi, M.N. Ashiq, M.A. Zia, M. Ishaq, H.-B. Kraatz, Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J. Appl. Elect. 45, 463–472 (2015)

    Article  Google Scholar 

  54. P. Díaz-Núñez, J. González-Izquierdo, G. González-Rubio, A. Guerrero-Martínez, A. Rivera, J.M. Perlado, L. Bañares, O. Peña-Rodríguez, Effect of organic stabilizers on silver nanoparticles fabricated by femtosecond pulsed laser ablation. Appl. Sci. 7, 793 (2017)

    Article  Google Scholar 

  55. N.Q. Dong, Preparation of Au-Ag Alloy Nanoparticles for Surface Enhanced Raman Scattering. VNU J.S.: Ma. P. 31 (2015)

  56. M.A. Al-Azawi, N. Bidin, K.N. Abbas, M. Bououdina, S.A. Azzez, Broadband optical absorption enhancement of N719 dye in ethanol by gold–silver alloy nanoparticles fabricated under laser ablation technique. J. Nanophot. 10, 026009 (2016)

  57. Y.-H. Chen, C.-S. Yeh, A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixturesElectronic supplementary information (ESI) available: experimental details, UV–VIS spectra, TEM images and EDX analysis for molar ratios (Au∶ Ag) of 1∶ 2 and 2∶ 1. See http://www.rsc.org/suppdata/cc/b0/b009854j. Chem. Commun. 371–372 (2001)

  58. Q. Zhang, J.Y. Lee, J. Yang, C. Boothroyd, J. Zhang, Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechn. 18, 245605 (2007)

  59. A.M. Alwan, D.A. Hashim, M.F. Jawad, Optimizing of porous silicon alloying process with bimetallic nanoparticles. Gold Bull. 51, 175–184 (2018)

    Article  Google Scholar 

  60. W. Zhang, L. Huang, J. Zhu, Y. Liu, J. Wang, Synthesis of monodisperse Ag–Au alloy nanoparticles with large size by a facile fabrication process. Mater. Chem. Phys. 131, 136–141 (2011)

    Article  Google Scholar 

  61. K. Hareesh, D. Sunitha, S.D. Dhole, V.N. Bhoraskar, D.M. Phase, J. Williams, One-step gamma radiation aided diffusion of Ag-Au alloy nanoparticles into polycarbonate and its application towards the reduction of 4-Nitrophenol. Radiat. Phys. Chem. 162, 126–130 (2019)

    Article  ADS  Google Scholar 

  62. A.H.O. Alkhayatt, M.H. Moheel, M.M. Abood, Antibacterial activity of mono and bimetallic Au: Ag colloidal nanoparticles prepared by pulse laser ablation PLA. J. Kufa Phys. 10, 8–19 (2018)

    Article  Google Scholar 

  63. M. Navas, Pulsed laser ablation of composite metal nanoparticles: studies on growth, plasmonic sensing and catalysis, in, IIT Delhi, (2017)

  64. S. Verma, B. Rao, A. Detty, V. Ganesan, D. Phase, S. Rai, A. Bose, S. Joshi, L. Kukreja, Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures. J. Appl. Phys. 117, 133105 (2015)

  65. M. Ganjali, M. Ganjali, P. Sangpour, Synthesis of bimetallic nanoalloy layer using simultaneous laser ablation of monometallic targets. J. Appl. Spectro. 80, 991–997 (2014)

    Article  ADS  Google Scholar 

  66. A. Sellinger, T. Aburada, J. Fitz-Gerald, Synthesis of multimetallic nanoparticles using a solution-based pulsed laser deposition approach, in High-Power Laser Ablation VII, (Internat. Society Opt. Photo. 2008), pp. 700516

  67. Y. Oh, J. Lee, M. Lee, Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl. Surf. Sci. 434, 1293–1299 (2018)

    Article  ADS  Google Scholar 

  68. W. Sun, R. Hong, Q. Liu, Z. Li, J. Shi, C. Tao, D. Zhang, SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation. Opt. Mater. 96, 109298 (2019)

  69. S. Kunwar, P. Pandey, M. Sui, S. Bastola, J. Lee, Evolution of ternary AuAgPd nanoparticles by the control of temperature, thickness, and tri-layer. Metals 7, 472 (2017)

    Article  Google Scholar 

  70. S. Wenfeng, H. Ruijin, L. Qingyou, L. Zhengwang, S. Jingqi, T. Chunxian , Z. Dawei, SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation. Opt. Mater. 96, 109298 (2019)

  71. S. Kunwar, P. Pandey, M. Sui, S. Bastola, J. Lee, Evolution of ternary AuAgPd nanoparticles by the control of temperature, thickness, and tri-layer. Meta 7, 472 (2017)

    Google Scholar 

  72. S. Imamovaa, N. Nedyalkova, A. Dikovskaa, P. Atanasova, M. Sawczakb, R. Jendrzejewski, Near field properties of nanoparticle arrays fabricated by laser annealing of thin Au and Ag films. Appl. Surf. Sci. 257, 1075–1079 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude towards the Institute of Nano Optoelectronics Research (INOR), and Technology as well as the Universiti Sains Malaysia (USM), for offering the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hameed Naser or Z. Hassan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naser, H., Hassan, Z., Mohammad, S.M. et al. Parameters Influencing the Absorbance of Gold-Silver Alloy Nanomaterials Using the Pulsed Laser Ablation in Liquid (PLAL) Approach: a Review. Braz J Phys 52, 100 (2022). https://doi.org/10.1007/s13538-022-01072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01072-0

Keywords

Navigation