Skip to main content
Log in

Ligand-free gold–silver nanoparticle alloy polymer composites generated by picosecond laser ablation in liquid monomer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polymer matrix nanocomposites filled with metallic and alloy nanoparticles add functionality in various applications such as optical devices and in the energy sector. However, matrix coupling agents or nanoparticle ligands may be unwanted additives, potentially inhibiting the resulting nanocomposite to be processed by injection molding. The generation of stabilizer-free Au, Ag, and AuAg alloy nanoparticle acrylate composites is achieved by picosecond-pulsed laser ablation of the respective metal target in the liquid monomer. Complementary to laser ablation of the solid alloy, we have alloyed nanoparticles by post-irradiation of Au and Ag colloids in the liquid monomer. The optical properties of the colloidal nanoparticles are successfully transferred to the solid poly(methyl methacrylate) matrix and characterized by their plasmon resonance that can be easily tuned between 400 and 600 nm by laser alloying in the liquid monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For the calculation of the plasmon wavelength, the following material parameters are used: refractive index of MMA n MMA=1.49; plasma frequency of Au λ p =136.3 nm; plasma frequency of Ag λ p =133.0 nm (Landolt–Börnstein); high frequency dielectric function of Au 13.2 nm and Ag 4.9 nm.

References

  1. S. Misra, P. Mathur, M. Yadav, M. Tiwari, S. Garg, P. Tripathi, Polymer 45(25), 8623–8628 (2004)

    Article  Google Scholar 

  2. M. Wang, X. Wang, Polymer 49(6), 1587–1593 (2008)

    Article  Google Scholar 

  3. Y. Li, S. Fu, Y. Mai, Polymer 46(6), 2127–2132 (2006)

    Article  Google Scholar 

  4. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas, Polymer 45(12), 4227–4239 (2004)

    Article  Google Scholar 

  5. T. Kashiwagi, F. Du, J. Douglas, K. Winey, R. Harris, J. Shields, Nat. Mater. 4(12), 928–933 (2005)

    Article  ADS  Google Scholar 

  6. H. Koerner, G. Price, N. Pearce, M. Alexander, R. Vaia, Nat. Mater. 3(2), 115–120 (2004)

    Article  ADS  Google Scholar 

  7. J. Smith, J. Connell, D. Delozier, P. Lillehei, K. Watson, Y. Lin, B. Zhou, Y. Sun, Polymer 45(3), 825–836 (2004)

    Article  Google Scholar 

  8. A. Pomogailo, V. Kestelman, Metallopolymer Nanocomposites (Springer, Berlin, 2005)

    Google Scholar 

  9. E.T. Thostenson, C. Li, T.W. Chou, Compos. Sci. Technol. 65(3–4), 491–516 (2005)

    Article  Google Scholar 

  10. A. Kabashin, M. Meunier, J. Appl. Phys. 94(12), 7941–7943 (2003)

    Article  ADS  Google Scholar 

  11. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202(1–2), 80–85 (2002)

    Article  ADS  Google Scholar 

  12. S.C. Singh, R. Gopal, J. Phys. Chem. C 112(8), 2812–2819 (2008)

    Article  Google Scholar 

  13. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100(11), 114912-1–114912-6 (2006)

    ADS  Google Scholar 

  14. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 105(22), 5114–5120 (2001)

    Article  Google Scholar 

  15. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107(18), 4218–4223 (2003)

    Article  Google Scholar 

  16. J. Sylvestre, A. Kabashin, E. Sacher, M. Meunier, J. Luong, J. Am. Chem. Soc. 126(23), 7176–7177 (2004)

    Article  Google Scholar 

  17. G. Compagnini, A.A. Scalisi, O. Puglisi, J. Appl. Phys. 94(12), 7874–7877 (2003)

    Article  ADS  Google Scholar 

  18. S. Barcikowski, M. Hustedt, B. Chichkov, Polimery 53(9), 657–662 (2008)

    Google Scholar 

  19. F. Grohn, B. Bauer, Y. Akpalu, C. Jackson, E. Amis, Macromolecules 33(16), 6042–6050 (2000)

    Article  ADS  Google Scholar 

  20. V. Chechik, R. Crooks, Langmuir 15(19), 6364–6369 (1999)

    Article  Google Scholar 

  21. A. Semerok, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Salle, P. Palianov, M. Perdrix, G. Petite, Appl. Surf. Sci. 139, 311–314 (1999)

    Article  Google Scholar 

  22. B.N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann, Appl. Phys. A, Mater. Sci. Process. 63(2), 109–115 (1996)

    Article  ADS  Google Scholar 

  23. G. Ledoux, D. Amans, C. Dujardin, K. Masenelli-Varlot, Nanotechnology 20(44), 445605 (2009)

    Article  ADS  Google Scholar 

  24. T. Trelenberg, L. Dinh, B. Stuart, M. Balooch, Appl. Surf. Sci. 229(1–4), 268–274 (2004)

    Article  ADS  Google Scholar 

  25. S. Petersen, S. Barcikowski, Adv. Funct. Mater. 19(8), 1167–1172 (2009)

    Article  Google Scholar 

  26. V. Zaporojtchenko, R. Podschun, U. Schuermann, A. Kulkarni, F. Faupel, Nanotechnology 17(19), 4904–4908 (2006)

    Article  ADS  Google Scholar 

  27. A. Hahn, S. Guenter, P. Wagener, S. Barcikowski, J. Mater. Chem. 21(28), 10287–10289 (2011)

    Article  Google Scholar 

  28. A. Wang, Y. Hsieh, Y. Chen, C. Mou J. Catal. 237(1), 197–206 (2006)

    Article  Google Scholar 

  29. L. Polavarapu, N. Venkatram, W. Ji, Q.H. Xu, ACS Appl. Mater. Interfaces 1(10), 2298–2303 (2009)

    Article  Google Scholar 

  30. P. Wagener, G. Brandes, A. Schwenke, S. Barcikowski, Phys. Chem. Chem. Phys. 13(11), 5120–5126 (2011)

    Article  Google Scholar 

  31. J. Jakobi, A. Menendez-Manjon, Chakravadhanula, K. Venkata Sai, L. Kienle, P. Wagener, S. Barcikowski, Nanotechnology 22(14), 145601 (2011)

    Article  ADS  Google Scholar 

  32. J. Jakobi, S. Petersen, A. Menendez-Manjon, P. Wagener, S. Barcikowski, Langmuir 26(10), 6892–6897 (2010)

    Article  Google Scholar 

  33. S. Barcikowski, A. Menendez-Manjon, B. Chichkov, M. Brikas, G. Raciukaitis, Appl. Phys. Lett. 91(8), 083113 (2007)

    Article  ADS  Google Scholar 

  34. E. Hecht, Optics (Addison-Wesley, Reading, 2002)

    Google Scholar 

  35. E. Cottancin, J. Lerme, M. Gaudry, M. Pellarin, J. Vialle, M. Broyer, B. Prevel, M. Treilleux, P. Melinon, Phys. Rev. B, Condens. Matter 62(8), 5179–5185 (2000)

    Article  ADS  Google Scholar 

  36. G. Compagnini, E. Messina, O. Puglisi, V. Nicolosi, Appl. Surf. Sci. 254(4), 1007–1011 (2007)

    Article  ADS  Google Scholar 

  37. P. Mulvaney, Langmuir 12(3), 788–800 (1996)

    Article  Google Scholar 

  38. J.F. Sanchez-Ramirez, U. Pal, L. Nolasco-Hernandez, J. Mendoza-Alvarez, J.A. Pescador-Rojas, J. Nanomater. 2008, 620412 (2008)

    Google Scholar 

  39. E. Roberts, K. Clarke, R. Hunt, Mater. Sci. Eng. 42(1–2), 71–80 (1980)

    Google Scholar 

  40. A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, Appl. Phys. A, Mater. Sci. Process. 104, S77–S82 (2011)

    Article  ADS  Google Scholar 

  41. V. Bogatyrev, L. Dykman, B. Khlebtsov, N. Khlebtsov, Opt. Spectrosc. 96(1), 128–135 (2004)

    Article  ADS  Google Scholar 

  42. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A, Mater. Sci. Process. 87(1), 47–55 (2007)

    Article  ADS  Google Scholar 

  43. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, J. Photochem. Photobiol. A, Chem. 145(3), 201–207 (2001)

    Article  Google Scholar 

  44. S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 89(23), 233122 (2006)

    Article  ADS  Google Scholar 

  45. A. Takami, H. Kurita, S. Koda, J. Phys. Chem. B 103(8), 1226–1232 (1999)

    Article  Google Scholar 

  46. P. Mulvaney, L. Liz-Marzan, M. Giersig, T. Ung, J. Mater. Chem. 10(6), 1259–1270 (2000)

    Article  Google Scholar 

  47. M. Kawasaki, N. Nishimura, Appl. Surf. Sci. 253(4), 2208–2216 (2006)

    Article  ADS  Google Scholar 

  48. D. Werner, S. Hashimoto, T. Tomita, S. Matsuo, Y. Makita, J. Phys. Chem. C 112(5), 1321–1329 (2008)

    Article  Google Scholar 

  49. J. Zhang, J. Worley, S. Denommee, C. Kingston, Z.J. Jakubek, Y. Deslandes, M. Post, B. Simard, N. Braidy, G.A. Botton, J. Phys. Chem. B 107(29), 6920–6923 (2003)

    Article  Google Scholar 

  50. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, J. Phys. Chem. B 110(6), 2549–2554 (2006)

    Article  Google Scholar 

  51. M. Zhou, S. Chen, S. Zhao, H. Ma, Physica E 33(1), 28–34 (2006)

    Article  ADS  Google Scholar 

  52. L. Liz-Marzan, Langmuir 22(1), 32–41 (2006)

    Article  Google Scholar 

  53. P.V. Kamat, M. Flumiani, G.V. Hartland, J. Phys. Chem. B 102(17), 3123–3128 (1998)

    Article  Google Scholar 

  54. D.D. ’t Zand van, P. Nachev, R. Rosenfeld, P. Wagener, A. Pich, D. Klee, S. Barcikowski, J. Laser Micro Nanoeng. 7(1), 21–27 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “Investitions- und Förderbank Niedersachsen—NBank” for financial support under the project W3-80019725 and the Institute for Physical Chemistry and Electrochemistry of Leibniz University, Hannover, for the FE-STEM-EDXS analysis of AuAg nanoparticles, and D.D. van’t Zand for help during the manuscript’s revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez-Manjón, A., Schwenke, A., Steinke, T. et al. Ligand-free gold–silver nanoparticle alloy polymer composites generated by picosecond laser ablation in liquid monomer. Appl. Phys. A 110, 343–350 (2013). https://doi.org/10.1007/s00339-012-7264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7264-0

Keywords

Navigation