Skip to main content
Log in

Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core–shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag–Au alloy and Ag@Au core–shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag–Au alloy NPs and Au shell thickness of Ag@Au core–shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20–40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1–2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Noguez, J. Phys. Chem. C. 111, 3806 (2007)

    Article  Google Scholar 

  2. K.C. Lee, S.J. Lin, C.H. Lin, C.S. Tsai, Y.J. Lu, Surf. Coat. Technol. 202, 5339 (2008)

    Article  Google Scholar 

  3. M.M. Miller, A.A. Lazarides, J. Phys. Chem. B. 109, 21556 (2005)

    Article  Google Scholar 

  4. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Chem. Rev. 108, 494 (2008)

    Article  Google Scholar 

  5. H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir. 24, 5233 (2008)

    Article  Google Scholar 

  6. M.H. Tu, T. Sun, K.T.V. Grattan, Sens. Actuators. B. 164, 43 (2012)

  7. W. Yuan, H.P. Ho, R.K. Lee, S.K. Kong, Appl. Opt. 48, 4329 (2009)

    Article  ADS  Google Scholar 

  8. C. David, N. Guillot, H. Shen, T. Toury, M.L. Chapelle, Nanotechnology. 21, 475501 (2010)

    Article  ADS  Google Scholar 

  9. J.S. Shekhon, S.S. Verma, Plasmonics. 6, 311 (2011)

    Article  Google Scholar 

  10. H. Shi, L. Zhang, W. Cai, J. Appl. Phys. 87, 1572 (2000)

    Article  ADS  Google Scholar 

  11. R. Sachan, S. Yadavali, N. Shirato, H. Krishna, V. Ramos, G. Duscher, S.J. Pennycook, A.K. Gangopadhyay, H. Garcia, R. Kalyanaraman, Nanotechnology. 23, 275604 (2012)

    Article  ADS  Google Scholar 

  12. K.S. Lee, M.A. El-Sayed, J. Phys. Chem. B. 110, 19220 (2006)

    Article  Google Scholar 

  13. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B. 105, 5114 (2001)

    Article  Google Scholar 

  14. T. Sasaki, Y. Shimizu, N. Koshizaki, J. Photochem. Photobiol. A. 182, 335 (2006)

    Article  Google Scholar 

  15. C. Sajti, R. Sattari, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C. 114, 2421 (2010)

    Article  Google Scholar 

  16. R. Singh, R.K. Soni, J. Nanosci. Lett. 3, 11 (2013)

    ADS  Google Scholar 

  17. H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  18. M. Maciulevicius, A. Vinciunas, M. Brikas, A. Butsen, N. Tarasenka, N. Tarasenko, G. Raciukaitis, Appl. Phys. A. 111, 289 (2013)

    Article  ADS  Google Scholar 

  19. G.X. Chen, M.H. Hong, B. Lan, Z.B. Wang, Y.F. Lu, T.C. Chong, Appl. Sur. Sci. 228, 169 (2004)

    Article  ADS  Google Scholar 

  20. G.X. Chen, M.H. Hong, T.C. Chong, H.I. Elim, G.H. Ma, W. Ji, J. Appl. Phys. 95, 1455 (2004)

    Article  ADS  Google Scholar 

  21. G.W. Yang, Prog. Mat. Sci. 52, 648 (2007)

    Article  Google Scholar 

  22. M. Hu, J. Chen, Z.Y. Li, L. Au, G.V. Hartland, X. Li, M. Marquez, Y. Xia, Chem. Soc. Rev. 35, 1084 (2006)

    Article  Google Scholar 

  23. R.D. Averitt, D. Sarkar, N.J. Halas, Phys. Rev. Lett. 78, 4217 (1997)

    Article  ADS  Google Scholar 

  24. E.J. Zemen, G.C. Schartz, J. Phys. Chem. 91, 634 (1987)

    Google Scholar 

  25. L.B. Scaffardi, J.O. Tocho, Nanotechnology. 17, 1309 (2006)

    Article  ADS  Google Scholar 

  26. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  27. M. Quinten, Z. Phys. B. 101, 211 (1996)

    Article  ADS  Google Scholar 

  28. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, J. Phys. Chem. B. 101, 3706 (1997)

    Article  Google Scholar 

  29. V. Myroshnychenko, J.R. Fernandez, I.P. Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzan, F.J. Abajo, Chem. Soc. Rev. 37, 1792 (2008)

    Article  Google Scholar 

  30. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79, 4215 (2007)

    Article  Google Scholar 

  31. J.M.J. Santillán, F.A. Videla, L.B. Scaffardi, D.C. Schinca, Plasmonics. 8, 341 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Navas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navas, M.P., Soni, R.K. Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor. Appl. Phys. A 116, 879–886 (2014). https://doi.org/10.1007/s00339-014-8460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8460-x

Keywords

Navigation