Skip to main content

Advertisement

Log in

Development of Photovoltaic Cells: A Materials Prospect and Next-Generation Futuristic Overview

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Photovoltaic (PV) solar cells are in high demand as they are environmental friendly, sustainable, and renewable sources of energy. The PV solar cells have great potential to dominate the energy sector. Therefore, a continuous development is required to improve their efficiency. Since the whole PV solar panel works at a maximum efficiency in a solar panel called maximum power point (MPP) and characterized by I–V analysis, an MPP technique has been developed to exploit the PV modules’ maximum power in all possible conditions. Various methods of fabrication for PV solar cells have been discussed in this review. The performances of these PV cells have also been compared and summarized in a table. Moreover, in this review, the development of different generations of PV solar cells and their respective characteristics for future applications have been discussed. Furthermore, the MPP method and its suitability for an artificial neural network (ANN)–based approach to detect the global maximum power point have also been discussed in this review. Finally, the conclusion and future perspective of PV solar cells have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced with permission from Ref. [39]

Fig. 3

Reproduced with permission from Ref. [51]

Fig. 4

reproduced with permission from ref. [57]

Fig. 5

reproduced with permission from Ref. [59]

Fig. 6

reproduced with permission from Ref. [62]

Fig. 7

Reproduced with permission from Ref. [63]

Fig. 8 

Reproduced with permission from Ref. [72]

Fig. 9

Reproduced with permission from Ref . [76]

Fig. 10

Reproduced with permission from ref. [84]

Fig. 11

reproduced with permission from ref. [85]

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

No such software application or custom code has been used in this research.

References

  1. V. Muteri, M. Cellura, D. Curto, V. Franzitta, S. Longo, M. Mistretta, M.L. Parisi, Review on life cycle assessment of solar photovoltaic panels. Energies 13, 252 (2020)

    Article  Google Scholar 

  2. P.A. Owusu, S. Asumadu-sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016)

    Article  Google Scholar 

  3. A. You, M.A.Y. Be, I. In, A New silicon p-n junction photocell for converting solar radiation into electrical. J. Appl. Phys. 25, 676–677 (1954)

    Article  Google Scholar 

  4. D. Lincot, The new paradigm of photovoltaics: from powering satellites to powering humanity. C. R. Phys. 18, 381–390 (2017)

    Article  Google Scholar 

  5. C.E. Frittis, New form of selenium cell. Am. J. Sci. 26, 465–472 (1883)

    ADS  Google Scholar 

  6. W. Smith, Effect of light on selenium during the passage of an electric current. Nature 7, 303 (1873)

    Article  Google Scholar 

  7. D. Neuhaus, Munzer Adolf, Industrial silicon wafer solar cells. Adv. Optoelectron. 024521, 1–15 (2007)

    Article  Google Scholar 

  8. M. Gul, Y. Kotak, T. Muneer, Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 34(4), 485–526 (2016)

    Article  Google Scholar 

  9. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  10. J. IlKwak, S. Nam, L. Kim, Y. An, Potential environmental risk of solar cells: current knowledge and future challenges. J. Hazard. Mater. 392, 122297 (2020)

    Article  Google Scholar 

  11. R. Fu, D. Chung, T. Lowder, D. Feldman, K. Ardani, R. Fu, D. Chung, T. Lowder, D. Feldman, K. Ardani, U.S. Solar photovoltaic system cost benchmark: Q1 2016, Tech. Rep. NREL/TP-6A20-66532 (2016)

  12. A. Sacco, Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells. Renew. Sustain. Energy Rev. 79, 814–829 (2017)

    Article  Google Scholar 

  13. V.V. Tyagi, N.A.A. Rahim, N.A. Rahim, J.A.L. Selvaraj, Progress in solar PV technology: research and achievement. Renew. Sustain. Energy Rev. 20, 443–461 (2013)

    Article  Google Scholar 

  14. G.M. Wilson, M. Al-Jassim, W.K. Metzger, S.W. Glunz, P. Verlinden, G. Xiong, L.M. Mansfield, B.J. Stanbery, K. Zhu, Y. Yan, J.J. Berry, A.J. Ptak, F. Dimroth, B.M. Kayes, A.C. Tamboli, R. Peibst, K. Catchpole, M.O. Reese, C.S. Klinga, P. Denholm, M. Morjaria, M.G. Deceglie, J.M. Freeman, M.A. Mikofski, D.C. Jordan, G. Tamizhmani, D.B. Sulas-Kern, The 2020 photovoltaic technologies roadmap. J. Phys. D 53, 493001 (2020)

    Article  Google Scholar 

  15. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (Version 31). Prog. Photovoltaics Res. Appl. 16, 61–67 (2008)

    Article  Google Scholar 

  16. Z.A. Ansari, T.J. Singh, S.M. Islam, S. Singh, P. Mahala, A. Khan, K.J. Singh, Photovoltaic solar cells based on graphene/gallium arsenide Schottky junction. Optik (Stuttg). 182, 500–506 (2019)

    Article  ADS  Google Scholar 

  17. R. Sahebi, M.R. Roknabadi, M. Behdani, Semi-transparent Schottky junction solar cell based on evaporated CdSe thin films: influence of post-deposition air-annealing. Optik (Stuttg). 204, 164204 (2020)

    Article  ADS  Google Scholar 

  18. V. Arivazhagan, J. Xie, P. Hang, M. Manonmani Parvathi, A. Khan, C. Cui, D. Yang, X. Yu, Interface engineering of C60/ fluorine doped tin oxide on the photovoltaic performance of perovskite solar cells using the physical vapor deposition technique. J. Phys. D 52, 225104 (2019)

    Article  ADS  Google Scholar 

  19. V. Arivazhagan, P. Hang, M.M. Parvathi, Z. Tang, A. Khan, D. Yang, X. Yu, All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer. Nanotechnology 31, 065401 (2020)

    Article  ADS  Google Scholar 

  20. A. Wang, Y. Xuan, A detailed study on loss processes in solar cells. Energy 144, 490–500 (2018)

    Article  Google Scholar 

  21. G.M.S. Azevedo, M.C. Cavalcanti, K.C. Oliveira, F.A.S. Neves, Z.D. Lins, Comparative evaluation of maximum power point tracking methods for photovoltaic systems. J. Sol. Energy Eng. Trans. ASME. 131, 0310061–0310068 (2009)

    Article  Google Scholar 

  22. R. Venkateswari, S. Sreejith, Factors influencing the efficiency of photovoltaic system. Renew. Sustain. Energy Rev. 101, 376–394 (2019)

    Article  Google Scholar 

  23. P.K. Pathak, A.K. Yadav, P.A. Alvi, Advanced solar MPPT techniques under uniform and non-uniform irradiance: a comprehensive review. J. Sol. Energy Eng. Trans. ASME. 142, 1–26 (2020)

    Article  Google Scholar 

  24. D. Picault, B. Raison, S. Bacha, J. dela Casa, J. Aguilera, Forecasting photovoltaic array power production subject to mismatch losses. Sol. Energy 84, 1301–1309 (2010)

    Article  ADS  Google Scholar 

  25. Y. Su, L.C. Chan, L. Shu, K.L. Tsui, Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems. Appl. Energy. 93, 319–326 (2012)

    Article  Google Scholar 

  26. A.M. Ameen, J. Pasupuleti, T. Khatib, W. Elmenreich, H.A. Kazem, Modeling and characterization of a photovoltaic array based on actual performance using cascade-forward back propagation artificial neural network. J. Sol. Energy Eng. Trans. ASME. 137, 1–5 (2015)

    Article  Google Scholar 

  27. Z. Zandi, A.H. Mazinan, Maximum power point tracking of the solar power plants in shadow mode through artificial neural network. Complex Intell. Syst. 5, 315–330 (2019)

    Article  Google Scholar 

  28. A.H.A. Al-Waeli, K. Sopian, J.H. Yousif, H.A. Kazem, J. Boland, M.T. Chaichan, Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study. Energy Convers. Manag. 186, 368–379 (2019)

    Article  Google Scholar 

  29. A. Gupta, C.-H. Hsu, C.-S. Lai, Enhancement of the Au/ZnO-NA plasmonic SERS signal using principal component analysis as a machine learning approach. IEEE Photonics J. 12, 2200611 (2020)

    Article  Google Scholar 

  30. W.A. Badawy, S.A. Elmeniawy, A.N. Hafez, Improvement of the photovoltaic characteristics of industrially fabricated solar cells by chemical etching of the Si surface. J. Sol. Energy Eng. Trans. ASME. 137, 1–6 (2015)

    Article  Google Scholar 

  31. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019)

    Article  ADS  Google Scholar 

  32. W.C. Sinke, Development of photovoltaic technologies for global impact. Renew. Energy. 138, 911–914 (2019)

    Article  Google Scholar 

  33. J.C. Bernède, Organic photovoltaic cells: history, principle and techniques. J. Chil. Chem. Soc. 3, 1549–1564 (2008)

    Google Scholar 

  34. R. Rawat, S.C. Kaushik, R. Lamba, A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system. Renew. Sustain. Energy Rev. 57, 1506–1519 (2016)

    Article  Google Scholar 

  35. B. Singha, C.S. Solanki, N-type solar cells: advantages, issues, and current. Mater. Res. Express. 4, 072001 (2017)

    Article  ADS  Google Scholar 

  36. D.S. Cells, Inorganic p-type semiconductors: their applications. Energies 9, 331 (2016)

    Article  Google Scholar 

  37. S.O.V, Y.VA, T.N. Patrusheva, F.F. Merkushev, M.Y. Railko, S.A. Podorozhnyak, Antireflection and protective films for silicon solar cells, IOP Conf. Ser. Mater. Sci. Eng. 66 (2014) 012049.

  38. F. Ali, F. Hossain, Influence of front and back contacts on photovoltaic performances of p-n homojunction Si solar cell: considering an electron-blocking layer. Int. J. Photoenergy. 7415851, 1–6 (2017)

    Google Scholar 

  39. P. Sharma, P. Goyal, Evolution of PV technology from conventional to nano-materials. Mater. Today Proc. 28, 1593–1597 (2020)

    Article  Google Scholar 

  40. L.A. Studies, Environmental performance of emerging photovoltaic technologies: assessment of the status quo and future prospects based on a meta-analysis of life-cycle assessment studies. Energies 12, 4228 (2019)

    Article  Google Scholar 

  41. D.M. Bagnall, M. Boreland, Photovoltaic technologies. Energy Policy 36, 4390–4396 (2008)

    Article  Google Scholar 

  42. G. Conibeer, Third-generation photovoltaics. Mater. Today. 10, 42–50 (2007)

    Article  Google Scholar 

  43. S. Diwania, S. Agrawal, A.S. Siddiqui, S. Singh, Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement. Int. J. Energy Environ. Eng. 11, 33–54 (2020)

    Article  Google Scholar 

  44. S.H. Fukurozaki, R. Zilles, I.L. Sauer, Energy payback time and CO2 emissions of 1.2 kWp photovoltaic roof-top system in Brazil. Int. J. Smart Grid Clean Energy 2, 164–169 (2012)

    Article  Google Scholar 

  45. H. Najafi, K.A. Woodbury, Modeling and analysis of a combined photovoltaic-thermoelectric power generation system. J. Sol. Energy Eng. Trans. ASME. 135, 1–8 (2013)

    Article  Google Scholar 

  46. H. Savin, P. Repo, G. VonGastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotechnol. 10, 624–629 (2015)

    Article  ADS  Google Scholar 

  47. M. Li, X. Ji, G.L. Li, Z.M. Yang, S.X. Wei, L.L. Wang, Performance investigation and optimization of the trough concentrating photovoltaic/thermal system. Sol. Energy. 85, 1028–1034 (2011)

    Article  ADS  Google Scholar 

  48. A.F. Abdul Kadir, T. Khatib, L.S. Lii, E.E. Hassan, Optimal placement and sizing of photovoltaic based distributed generation considering costs of operation planning of monocrystalline and thin-film technologies. J. Sol. Energy Eng. Trans. ASME. 141, 1–8 (2019)

    Article  Google Scholar 

  49. S. Chander, A. Purohit, A. Sharma, S.P. Nehra, M.S. Dhaka, A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep. 1, 104–109 (2015)

    Article  Google Scholar 

  50. C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, Polycrystalline silicon thin-film solar cells: status and perspectives. Sol. Energy Mater. Sol. Cells. 119, 112–123 (2013)

    Article  Google Scholar 

  51. M.T. Zarmai, N.N. Ekere, C.F. Oduoza, E.H. Amalu, A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly. Appl. Energy. 154, 173–182 (2015)

    Article  Google Scholar 

  52. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovoltaics 12(2–3), 69–92 (2004)

    Article  Google Scholar 

  53. H. Kim, K. Cha, V.M. Fthenakis, P. Sinha, T. Hur, Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems. Sol. Energy. 103, 78–88 (2014)

    Article  ADS  Google Scholar 

  54. J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci. 10, 1306–1319 (2017)

    Article  Google Scholar 

  55. B.M.Ba~ol, V.K.Kapur, A.Halani, Craig Leidholm, Copper indium diselenide thin film solar cells fabricated on flexible foil substrates, Sol. Energy Mater. Sol. Cells. 29 (1993) 163–173.

  56. A.Seyhan, T.Altan, Ö.C.Ecer, R.Zan, A hydrogenated amorphous silicon (a-Si: H) thin films for heterojunction solar cells: structural and optical properties, J. Phys. Conf. Ser. 902 (2017) 012024.

  57. J. Plentz, G. Andrä, T. Pliewischkies, U. Brückner, B. Eisenhawer, F. Falk, Amorphous silicon thin-film solar cells on glass fiber textiles. Mater. Sci. Eng. B. 204, 34–37 (2016)

    Article  Google Scholar 

  58. A.Ramos-ruiz, J.VWilkening, J.A.Field, R.Sierra-alvarez, Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions, J. Hazard. Mater. 336 (2017) 57–64.

  59. H.Tariq, S.Anwer, X.Wang, A.Ali, W.Deliang, Optik carbon-nanofibers film as a back-contact buffer layer in CdTe thin film solar cell, Optik (Stuttg). 224 (2020) 165505.

  60. S.O, A.G, D.O, Simulation of the performance of CDTE/CDS/ZNO multi-junction thin film solar cell, Rev. Inf. Eng. Appl. 3, 1–10 (2016)

  61. A. Bosio, S. Pasini, N. Romeo, The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings 10, 344 (2020)

    Article  Google Scholar 

  62. W. Yang, P. Dai, L. Ji, M. Tan, Y. Wu, S. Uchida, S. Lu, H. Yang, Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells. Appl. Surf. Sci. 389, 673–678 (2016)

    Article  ADS  Google Scholar 

  63. R.W. Miles, G. Zoppi, I. Forbes, Inorganic photovoltaic cells. Mater. Today. 10, 20–27 (2007)

    Article  Google Scholar 

  64. M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14, 65–70 (2002)

    Article  ADS  Google Scholar 

  65. K. Ramasamy, M.A. Malik, P.O. Brien, Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun. 48, 5703–5714 (2012)

    Article  Google Scholar 

  66. G. Mittelman, A. Kribus, A. Dayan, Solar cooling with concentrating photovoltaic/thermal (CPVT) systems. Energy Convers. Manag. 48, 2481–2490 (2007)

    Article  Google Scholar 

  67. M. Hein, F. Dimroth, G. Siefer, A.W. Bett, Characterisation of a 300 Â photovoltaic concentrator system with one-axis tracking. Sol. Energy Mater. Sol. Cells. 75, 277–283 (2003)

    Article  Google Scholar 

  68. Y. Wang, Research progress on improving the photovoltaic performance of polymer solar cells. J. Sol. Energy Eng. Trans. ASME. 134, 1–9 (2012)

    Article  ADS  Google Scholar 

  69. Y.C. Chen, C.Y. Yu, C.P. Chen, S.H. Chan, C. Ting, Effective light harvesting of tandem polymer solar cell. J. Sol. Energy Eng. Trans. ASME. 132, 0211031–0211036 (2010)

    Article  Google Scholar 

  70. A.K. Gupta, C.H. Hsu, A. Purwidyantri, B.A. Prabowo, K.P. Chiu, C.H. Chen, Y.C. Tian, C.S. Lai, ZnO-nanorod processed PC-SET as the light-harvesting model for plasmontronic fluorescence Sensor. Sensors Actuators B 307, 127597 (2020)

    Article  Google Scholar 

  71. D. Applications, Quantum dots and their applications: what lies ahead? ACS Appl. Nano Mater. 2020(3), 4920–4924 (2020)

    Google Scholar 

  72. A. Ghazy, M. Safdar, M. Lastusaari, H. Savin, M. Karppinen, Advances in upconversion enhanced solar cell performance. Sol. Energy Mater. Sol. Cells. 230, 111234 (2021)

    Article  Google Scholar 

  73. P. Tonui, S.O. Oseni, G. Sharma, Perovskites photovoltaic solar cells: an overview of current status. Renew. Sustain. Energy Rev. 91, 1025–1044 (2018)

    Article  Google Scholar 

  74. S.K. Sharma, K. Ali, Photovoltaic-based nanomaterials: synthesis and characterization, (2020)

  75. S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V.M. Ramakrishnan, S.E. Palanisamy, S. Sundaram, D. Velauthapillai, A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 13, 2526–2557 (2020)

    Article  Google Scholar 

  76. K.D.G.I. Jayawardena, L.J. Rozanski, C.A. Mills, M.J. Beliatis, N.A. Nismy, S.R.P. Silva, Inorganics-in-Organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5, 8411–8427 (2013)

    Article  ADS  Google Scholar 

  77. Z. Salam, J. Ahmed, B.S. Merugu, The application of soft computing methods for MPPT of PV system: a technological and status review. Appl. Energy. 107, 135–148 (2013)

    Article  Google Scholar 

  78. D. Verma, S. Nema, A.M. Shandilya, S.K. Dash, Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems. Renew. Sustain. Energy Rev. 54, 1018–1034 (2016)

    Article  Google Scholar 

  79. M.A. Eltawil, Z. Zhao, MPPT techniques for photovoltaic applications. Renew. Sustain. Energy Rev. 25, 793–813 (2013)

    Article  Google Scholar 

  80. R.T. Moyo, P.Y. Tabakov, S. Moyo, Design and modelling of the ANFIS based MPPT controller for a solar photovoltaic (SPV) system. J. Sol. Energy Eng. 143, 1–9 (2020)

    Google Scholar 

  81. A. Pallavee Bhatnagar, B.R.K. Nema, Conventional and global maximum power point tracking techniques in photovoltaic applications: a review. J. Renew. Sustain. Energy 5, 032701 (2013)

    Article  Google Scholar 

  82. L.Avila, M.DePaula, M.Trimboli, I.Carlucho, Deep reinforcement learning approach for MPPT control of partially shaded PV systems in smart grids, Appl. Soft Comput. 97 (2020) 106711.

  83. A.S.Saidi, C.BenSalah, A.Errachdi, M.F.Azeem, J.K.Bhutto, V.P.Thafasal Ijyas, M.BenSlimene, A novel approach in stand-alone photovoltaic system using MPPT controllers & NNE, Ain Shams Eng. J. (2021).

  84. J. Ramos-Hernanz, I. Uriarte, J.M. Lopez-Guede, U. Fernandez-Gamiz, A. Mesanza, E. Zulueta, Temperature based maximum power point tracking for photovoltaic modules. Sci. Rep. 10, 12476 (2020)

    Article  ADS  Google Scholar 

  85. S.A. Rizzo, G. Scelba, ANN based MPPT method for rapidly variable shading conditions. Appl. Energy. 145, 124–132 (2015)

    Article  Google Scholar 

  86. M. Mao, L. Cui, Q. Zhang, K. Guo, L. Zhou, H. Huang, Classification and summarization of solar photovoltaic MPPT techniques: a review based on traditional and intelligent control strategies. Energy Rep. 6, 1312–1327 (2020)

    Article  Google Scholar 

  87. C. Battaglia, A. Cuevas, S. DeWolf, High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016)

    Article  Google Scholar 

  88. A.H. Eldin, M. Refaey, A. Farghly, A review on photovoltaic solar energy technology and its efficiency, 17th Int. Middle-East Power Syst. Conf. (2015) 1–8.

  89. Y. Hishikawa, E.D. Dunlop, D.H. Levi, M.A. Green, J. Hohl, E. Masahiro, Y. Anita, W.Y.H. Baillie, Solar cell efficiency tables (Version 53). Prog. Photovoltaics Res. Appl. 27, 3–12 (2019)

    Article  Google Scholar 

  90. N. Mariotti, C. Gerbaldi, M. Bonomo, F. Bella, C. Barolo, N. Barbero, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 22, 7168 (2020)

    Article  Google Scholar 

  91. J.W. Jung, H.S. Seung, C. Jun, Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cells. Polymers 13, 1281 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Department of Chemical Engineering, College of Engineering, Jazan University, to provide the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Farji.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farji, M. Development of Photovoltaic Cells: A Materials Prospect and Next-Generation Futuristic Overview. Braz J Phys 51, 1916–1928 (2021). https://doi.org/10.1007/s13538-021-00981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00981-w

Keywords

Navigation