Skip to main content
Log in

Review of functional materials for potential use as wearable infection sensors in limb prostheses

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The fundamental goal of prosthesis is to achieve optimal levels of performance and enhance the quality of life of amputees. Socket type prostheses have been widely employed despite their known drawbacks. More recently, the advent of osseointegrated prostheses have demonstrated potential to be a better alternative to socket prosthesis eliminating most of the drawbacks of the latter. However, both socket and osseointegrated limb prostheses are prone to superficial infections during use. Infection prone skin lesions from frictional rubbing of the socket against the soft tissue are a known problem of socket type prosthesis. Osseointegration, on the other hand, results in an open wound at the implant-stump interface. The integration of infection sensors in prostheses to detect and prevent infections is proposed to enhance quality of life of amputees. Pathogenic volatiles having been identified to be a potent stimulus, this paper reviews the current techniques in the field of infection sensing, specifically focusing on identifying portable and flexible sensors with potential to be integrated into prosthesis designs. Various sensor architectures including but not limited to sensors fabricated from conducting polymers, carbon polymer composites, metal oxide semiconductors, metal organic frameworks, hydrogels and synthetic oligomers are reviewed. The challenges and their potential integration pathways that can enhance the possibilities of integrating these sensors into prosthesis designs are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seymour R. Prosthetics and orthotics: lower limb and spinal. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  2. Magee R. Amputation through the ages: the oldest major surgical operation. Aust N Z J Surg. 1998;68(9):675–8.

    Article  Google Scholar 

  3. Fite K, Mitchell J, Sup F, Goldfarb M, editors. Design and control of an electrically powered knee prosthesis. In: 2007 IEEE 10th international conference on rehabilitation robotics. IEEE; 2007.

  4. Mavroidis C, Pfeiffer C, DeLaurentis KJ, Mosley MJ. Prosthetic, orthotic, and other rehabilitative robotic assistive devices actuated by smart materials. Google Patents; 2002.

  5. Carlson JD, Matthis W, Toscano JR, editors. Smart prosthetics based on magnetorheological fluids. Smart structures and materials 2001: industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics; 2001.

  6. Leong J, Parzer P, Perteneder F, Babic T, Rendl C, Vogl A, et al., editors. proCover: sensory augmentation of prosthetic limbs using smart textile covers. In: Proceedings of the 29th annual symposium on user interface software and technology. ACM;2016.

  7. Finch J. The ancient origins of prosthetic medicine. Lancet. 2011;377(9765):548–9.

    Article  Google Scholar 

  8. Thurston AJ. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007;77(12):1114–9.

    Article  Google Scholar 

  9. Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev. 2005;42(2):141.

    Article  Google Scholar 

  10. Simone F, York A, Seelecke S, editors. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires. In: Bioinspiration, biomimetics, and bioreplication. International Society for Optics and Photonics; 2015.

  11. Bahari MS, Jaffar A, Low CY, Jaafar R, Roese K, Yussof H. Design and development of a multifingered prosthetic hand. Int J Soc Robot. 2012;4(1):59–66.

    Article  Google Scholar 

  12. Campbell T, Williams C, Ivanova O, Garrett B. Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC. 2011:3.

  13. Dodziuk H. Applications of 3D printing in healthcare. Pol J Cardio-thoracic Surg. 2016;13(3):283.

    Article  Google Scholar 

  14. Childress D, Steege J. Computer-aided analysis of below-knee socket pressure. J Rehabil Res Dev. 1987;25(1):22–4.

    Google Scholar 

  15. Silver-Thorn B, Childress DS. Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibial amputation. J Rehabil Res Dev. 1996;33(3):227–38.

    Google Scholar 

  16. Sonck WA, Cockrell JL, Koepke GH. Effect of liner materials on interface pressures in below-knee prostheses. Arch Phys Med Rehabil. 1970;51(11):666.

    Google Scholar 

  17. Appoldt FA, Bennett L. A preliminary report on dynamic socket pressures. Bull Prosthet Res. 1967;10(8):20–55.

    Google Scholar 

  18. Convery P, Buis A. Socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee wearing a hydrocast socket. Prosthet Orthot Int. 1999;23(2):107–12.

    Article  Google Scholar 

  19. Biddiss E, Chau T. Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Med Eng Phys. 2006;28(6):568–78.

    Article  Google Scholar 

  20. Devaraj H, Giffney T, Petit A, Assadian M, Aw K. The development of highly flexible stretch sensors for a robotic hand. Robotics. 2018;7(3):54.

    Article  Google Scholar 

  21. Young AJ, Simon AM, Fey NP, Hargrove LJ. Intent recognition in a powered lower limb prosthesis using time history information. Ann Biomed Eng. 2014;42(3):631–41.

    Article  Google Scholar 

  22. Leong J, Parzer P, Perteneder F, Babic T, Rendl C, Vogl A, et al., editors. proCover: sensory augmentation of prosthetic limbs using smart textile covers. In: Proceedings of the 29th annual symposium on user interface software and technology. ACM;2016.

  23. McColl I. Review of artificial limb and appliance centre services: the report of an independent working party under the chairmanship of Professor Ian McColl. DHSS; 1986.

  24. Nielsen CC. A survey of amputees: functional level and life satisfaction, information needs, and the prosthetist’s role. J Prosthet Orthot. 1991;3(3):125–9.

    Article  MathSciNet  Google Scholar 

  25. Lyon CC, Kulkarni J, Zimersonc E, Van Ross E, Beck MH. Skin disorders in amputees. J Am Acad Dermatol. 2000;42(3):501–7.

    Article  Google Scholar 

  26. Levy SW. Skin problems of the leg amputee. Prosthet Orthot Int. 1980;4(1):37–44.

    Article  Google Scholar 

  27. Meulenbelt HE, Dijkstra PU, Jonkman MF, Geertzen JH. Skin problems in lower limb amputees: a systematic review. Disabil Rehabil. 2006;28(10):603–8.

    Article  Google Scholar 

  28. Branemark R, Branemark P, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 2001;38(2):175–82.

    Google Scholar 

  29. Adell R, Eriksson B, Lekholm U, Brånemark P-I, Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofacial Implants. 1990; 5(4).

  30. Aschoff H-H, Clausen A, Tsoumpris K, Hoffmeister T. Implantation der Endo-Exo-Femurprothese zur verbesserung der mobilität amputierter patienten. Operative Orthopädie und Traumatologie. 2011;23(5):462–72.

    Article  Google Scholar 

  31. Aschoff HH, Kennon RE, Keggi JM, Rubin LE. Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo-exo device. JBJS. 2010;92(2):180–6.

    Article  Google Scholar 

  32. Van de Meent H, Hopman MT, Frölke JP. Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil. 2013;94(11):2174–8.

    Article  Google Scholar 

  33. Haggstrom EE, Hansson E, Hagberg K. Comparison of prosthetic costs and service between osseointegrated and conventional suspended transfemoral prostheses. Prosthet Orthot Int. 2013;37(2):152–60.

    Article  Google Scholar 

  34. Brånemark R, Berlin Ö, Hagberg K, Bergh P, Gunterberg B, Rydevik B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 2014;96(1):106–13.

    Article  Google Scholar 

  35. Brånemark RP, Hagberg K, Kulbacka-Ortiz K, Berlin Ö, Rydevik B. Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year follow-up of patient-reported outcomes and complications. J Am Acad Orthop Surg. 2019;27(16):e743–e751. https://doi.org/10.5435/JAAOS-D-17-00621.

    Article  Google Scholar 

  36. Aschoff H, Juhnke D. Evaluation of 10 years experience with endo-exo femur prostheses-background, data and results. Zeitschrift fur Orthopadie und Unfallchirurgie. 2012;150(6):607–14.

    Google Scholar 

  37. Boyce JM. It is time for action: improving hand hygiene in hospitals. Ann Intern Med. 1999;130(2):153–5.

    Article  Google Scholar 

  38. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6(1):130.

    Article  Google Scholar 

  39. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176–87.

    Article  Google Scholar 

  40. Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections: a review. Acta Orthop. 2015;86(2):147–58.

    Article  Google Scholar 

  41. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43(3):338–48.

    Article  Google Scholar 

  42. Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, et al. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res. 2001;58(1):97–101.

    Article  Google Scholar 

  43. Shirtliff ME, Calhoun JH, Mader JT. Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res. 2002;401:239–47.

    Article  Google Scholar 

  44. Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samori B, et al. Staphylococcus epidermidis–fibronectin binding and its inhibition by heparin. Biomaterials. 2003;24(18):3013–9.

    Article  Google Scholar 

  45. Voller A, Bidwell D, Bartlett A. Enzyme immunoassays in diagnostic medicine: theory and practice. Bull World Health Organ. 1976;53(1):55.

    Google Scholar 

  46. Gomez E, Cazanave C, Cunningham SA, Greenwood-Quaintance KE, Steckelberg JM, Uhl JR, et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol. 2012;50(11):3501–8.

    Article  Google Scholar 

  47. Lee HH, Burczak J, Muldoon S, Leckie G, Chernesky M, Schachter J, et al. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet. 1995;345(8944):213–6.

    Article  Google Scholar 

  48. Majno G. The ancient riddle of σñψις (sepsis). J Infect Dis. 1991;163(5):937–45.

    Article  Google Scholar 

  49. Bean HD, Dimandja JMD, Hill JE. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B. 2012;901:41–6.

    Article  Google Scholar 

  50. Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem. 2006;52(5):800–11.

    Article  Google Scholar 

  51. Zhu J, Jiménez-Díaz J, Bean HD, Daphtary NA, Aliyeva MI, Lundblad LK, et al. Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance. J Breath Res. 2013;7(3):037106.

    Article  Google Scholar 

  52. Devaraj H, Pook C, Swift S, Aw KC, McDaid AJ. Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC–MS. J Sep Sci. 2018;41(22):4133–41.

    Article  Google Scholar 

  53. Malcolm A, Wright S, Syms RR, Moseley RW, O’Prey S, Dash N, et al. A miniature mass spectrometer for liquid chromatography applications. Rapid Commun Mass Spectrom. 2011;25(21):3281–8.

    Article  Google Scholar 

  54. Radadia A, Salehi-Khojin A, Masel R, Shannon M. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding. J Micromech Microeng. 2009;20(1):015002.

    Article  Google Scholar 

  55. Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352.

    Article  Google Scholar 

  56. Lombard GL, Dowell V. Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J Clin Microbiol. 1983;18(3):609–13.

    Article  Google Scholar 

  57. Barsan N, Schweizer-Berberich M, Göpel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius’ J Anal Chem. 1999;365(4):287–304.

    Article  Google Scholar 

  58. Ryabtsev S, Shaposhnick A, Lukin A, Domashevskaya E. Application of semiconductor gas sensors for medical diagnostics. Sens Actuat B Chem. 1999;59(1):26–9.

    Article  Google Scholar 

  59. Nanto H, Minami T, Takata S. Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J Appl Phys. 1986;60(2):482–4.

    Article  Google Scholar 

  60. Chung W-Y, Sakai G, Shimanoe K, Miura N, Lee D-D, Yamazoe N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens Actuat B Chem. 1998;46(2):139–45.

    Article  Google Scholar 

  61. Frank J, Fleischer M, Meixner H. Gas-sensitive electrical properties of pure and doped semiconducting Ga2O3 thick films. Sens Actuat B Chem. 1998;48(1–3):318–21.

    Article  Google Scholar 

  62. Tamaki J, Naruo C, Yamamoto Y, Matsuoka M. Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sens Actuat B Chem. 2002;83(1–3):190–4.

    Article  Google Scholar 

  63. Jung S-J, Yanagida H. The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas. Sens Actuat B Chem. 1996;37(1–2):55–60.

    Article  Google Scholar 

  64. Devi GS, Manorama S, Rao V. SnO2/Bi2O3: a suitable system for selective carbon monoxide detection. J Electrochem Soc. 1998;145(3):1039–44.

    Article  Google Scholar 

  65. Windischmann H, Mark P. A model for the operation of a thin-film SnOx conductance-modulation carbon monoxide sensor. J Electrochem Soc. 1979;126(4):627–33.

    Article  Google Scholar 

  66. Martin MA, Santos J, Vasquez H, Agapito J. Study of the interferences of NO2 and CO in solid state commercial sensors. Sens Actuat B Chem. 1999;58(1):469–73.

    Article  Google Scholar 

  67. Tang Z, Fung SK, Wong DT, Chan PC, Sin JK, Cheung PW. An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate. Sens Actuat B Chem. 1998;46(3):174–9.

    Article  Google Scholar 

  68. Heilig A, Barsan N, Weimar U, Schweizer-Berberich M, Gardner J, Göpel W. Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens Actuat B Chem. 1997;43(1–3):45–51.

    Article  Google Scholar 

  69. Egashira M, Shimizu Y, Takao Y. Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness. Sens Actuat B Chem. 1990;1(1–6):108–12.

    Article  Google Scholar 

  70. Frietsch M, Zudock F, Goschnick J, Bruns M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors. Sens Actuat B Chem. 2000;65(1–3):379–81.

    Article  Google Scholar 

  71. Lang A, Fleischer M, Meixner H. Surface modifications of Ga2O3 thin film sensors with Rh, Ru and Ir clusters. Sens Actuat B Chem. 2000;66(1–3):80–4.

    Article  Google Scholar 

  72. de Lacy CB, Ewen RJ, Ratcliffe NM, Sivanand P. Thick film organic vapour sensors based on binary mixtures of metal oxides. Sens Actuat B Chem. 2003;92(1–2):159–66.

    Google Scholar 

  73. Tan O, Zhu W, Yan Q, Kong L. Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1−x) α-Fe2O3 ethanol sensors. Sens Actuat B Chem. 2000;65(1–3):361–5.

    Article  Google Scholar 

  74. Taurino A, Capone S, Siciliano P, Toccoli T, Boschetti A, Guerini L, et al. Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sens Actuat B Chem. 2003;92(3):292–302.

    Article  Google Scholar 

  75. Comini E, Faglia G, Sberveglieri G, Li Y, Wlodarski W, Ghantasala M. Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb. Sens Actuat B Chem. 2000;64(1–3):169–74.

    Article  Google Scholar 

  76. Fang G, Liu Z, Liu C, Yao KL. Room temperature H2S sensing properties and mechanism of CeO2–SnO2 sol–gel thin films. Sens Actuat B Chem. 2000;66(1–3):46–8.

    Article  Google Scholar 

  77. Devi GS, Manorama S, Rao V. Gas sensitivity of SnO2/CuO heterocontacts. J Electrochem Soc. 1995;142(8):2754–7.

    Article  Google Scholar 

  78. Di Natale C, Davide F, Faglia G, Nelli P. Study of the effect of the sensor operating temperature on SnO2-based sensor-array performance. Sens Actuat B Chem. 1995;23(2–3):187–91.

    Article  Google Scholar 

  79. Tamaki J, Yamada Y, Yamamoto Y, Matsuoka M, Ota I. Sensing properties to dilute hydrogen sulfide of ZnSb2O6 thick-film prepared by dip-coating method. Sens Actuat B Chem. 2000;66(1–3):70–3.

    Article  Google Scholar 

  80. Kimura M. Absolute-humidity sensing independent of the ambient temperature. Sens Actuat A. 1996;55(1):7–11.

    Article  MathSciNet  Google Scholar 

  81. Satyanarayana L, Reddy CG, Manorama S, Rao V. Liquid-petroleum-gas sensor based on a spinel semiconductor, ZnGa2O4. Sens Actuat B Chem. 1998;46(1):1–7.

    Article  Google Scholar 

  82. Moseley P, Williams D. A selective ammonia sensor. Sens Actuat B Chem. 1990;1(1–6):113–5.

    Article  Google Scholar 

  83. Runthala D, Gupta R, Vyas P, Eranna G, Paris R, Schipanski D. A material for room temperature FET sensor to detect ammonia and hydrocarbon gases. Indian J Eng Mater Sci (IJEMS). 2000;7(5–6).

  84. Prasad A, Kubinski D, Gouma P. Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens Actuat B Chem. 2003;93(1–3):25–30.

    Article  Google Scholar 

  85. Schierbaum K-D. Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sens Actuat B Chem. 1995;24(1–3):239–47.

    Article  Google Scholar 

  86. Santos J, Serrini P, O’Beirn B, Manes L. A thin film SnO2 gas sensor selective to ultra-low NO2 concentrations in air. Sens Actuat B Chem. 1997;43(1–3):154–60.

    Article  Google Scholar 

  87. Ishihara T, Sato S, Fukushima T, Takita Y. Capacitive gas sensor of mixed oxide CoO–In2O3 to selectively detect nitrogen monoxide. J Electrochem Soc. 1996;143(6):1908–14.

    Article  Google Scholar 

  88. Kim S-R, Hong H-K, Kwon CH, Yun DH, Lee K, Sung YK. Ozone sensing properties of In2O3-based semiconductor thick films. Sens Actuat B Chem. 2000;66(1–3):59–62.

    Article  Google Scholar 

  89. Zhou X, Xu Y, Cao Q, Niu S. Metal-semiconductor ohmic contact of SnO2-based ceramic gas sensors. Sens Actuat B Chem. 1997;41(1–3):163–7.

    Article  Google Scholar 

  90. Saito S, Miyayama M, Koumoto K, Yanagida H. Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics. J Am Ceram Soc. 1985;68(1):40–3.

    Article  Google Scholar 

  91. Zhao S, Wei P, Chen S. Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium. Sens Actuat B Chem. 2000;62(2):117–20.

    Article  Google Scholar 

  92. Vilanova X, Llobet E, Alcubilla R, Sueiras JE, Correig X. Analysis of the conductance transient in thick-film tin oxide gas sensors. Sens Actuat B Chem. 1996;31(3):175–80.

    Article  Google Scholar 

  93. Bhattacharyya P, Basu P, Mondal B, Saha H. A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab. 2008;48(11–12):1772–9.

    Article  Google Scholar 

  94. Nylander C, Armgarth M, Lundström I. An ammonia detector based on a conducting polymer. In: Seiyama T. editor. Chemical sensors: meeting proceedings. Analytical chemistry symposia series, vol. 17. Elsevier; 1983. p. 203–207.

  95. Lu G, Qu L, Shi G. Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets. Electrochim Acta. 2005;51(2):340–6.

    Article  Google Scholar 

  96. Devaraj H, Travas-Sejdic J, Sharma R, Aydemir N, Williams D, Haemmerle E, et al. Bio-inspired flow sensor from printed PEDOT: PSS micro-hairs. Bioinspir Biomimetics. 2015;10(1):016017.

    Article  Google Scholar 

  97. Devaraj H, Sharma R, Haemmerle E, Aw K, editors. A portable & disposable ultra-low velocity flow sensor from bioinspired hair-like microstructures. In: Multidisciplinary digital publishing institute proceedings; 2018.

  98. Li B, Sauvé G, Iovu MC, Jeffries-El M, Zhang R, Cooper J, et al. Volatile organic compound detection using nanostructured copolymers. Nano Lett. 2006;6(8):1598–602.

    Article  Google Scholar 

  99. Zhang T, Nix MB, Yoo BY, Deshusses MA, Myung NV. Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanal Int J Devot Fund Pract Aspects Electroanal. 2006;18(12):1153–8.

    Google Scholar 

  100. Hernandez SC, Chaudhuri D, Chen W, Myung NV, Mulchandani A. Single polypyrrole nanowire ammonia gas sensor. Electroanal Int J Devot Fund Pract Aspects Electroanal. 1920;2007(19-20):2125–30.

    Google Scholar 

  101. Dixit V, Misra S, Sharma B. Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens Actuat B Chem. 2005;104(1):90–3.

    Article  Google Scholar 

  102. Sadek A, Wlodarski W, Shin K, Kaner RB, Kalantar-Zadeh K. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology. 2006;17(17):4488.

    Article  Google Scholar 

  103. Waghuley S, Yenorkar S, Yawale S, Yawale S. Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens Actuat B Chem. 2008;128(2):366–73.

    Article  Google Scholar 

  104. Misra S, Mathur P, Yadav M, Tiwari M, Garg S, Tripathi P. Preparation and characterization of vacuum deposited semiconducting nanocrystalline polymeric thin film sensors for detection of HCl. Polymer. 2004;45(25):8623–8.

    Article  Google Scholar 

  105. Virji S, Fowler JD, Baker CO, Huang J, Kaner RB, Weiller BH. Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small. 2005;1(6):624–7.

    Article  Google Scholar 

  106. Athawale AA, Bhagwat S, Katre PP. Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens Actuat B Chem. 2006;114(1):263–70.

    Article  Google Scholar 

  107. Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y. Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens Actuat B Chem. 2002;81(2–3):158–64.

    Article  Google Scholar 

  108. Chyla A, Lewandowska A, Soloducho J, Gorecka-Drzazga A, Szablewski M. 4-t-butyl-CuPc-PODT molecular composite material for an effective gas sensor. IEEE Trans Dielectr Electr Insul. 2001;8(3):559–65.

    Article  Google Scholar 

  109. Li G, Martinez C, Semancik S. Controlled electrophoretic patterning of polyaniline from a colloidal suspension. J Am Chem Soc. 2005;127(13):4903–9.

    Article  Google Scholar 

  110. Kondratowicz B, Narayanaswamy R, Persaud K. An investigation into the use of electrochromic polymers in optical fibre gas sensors. Sens Actuat B Chem. 2001;74(1–3):138–44.

    Article  Google Scholar 

  111. Im JS, Kang SC, Lee S-H, Lee Y-S. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon. 2010;48(9):2573–81.

    Article  Google Scholar 

  112. Leghrib R, Llobet E. Quantitative trace analysis of benzene using an array of plasma-treated metal-decorated carbon nanotubes and fuzzy adaptive resonant theory techniques. Anal Chim Acta. 2011;708(1–2):19–27.

    Article  Google Scholar 

  113. Kirkpatrick S. Percolation and conduction. Rev Mod Phys. 1973;45(4):574.

    Article  Google Scholar 

  114. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater. 1996;8(9):2298–312.

    Article  Google Scholar 

  115. Zhang B, Fu R, Zhang M, Dong X, Wang L, Pittman CU Jr. Gas sensitive vapor grown carbon nanofiber/polystyrene sensors. Mater Res Bull. 2006;41(3):553–62.

    Article  Google Scholar 

  116. Im JS, Kang SC, Lee S-H, Lee Y-S. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon. 2010;48(9):2573–81.

    Article  Google Scholar 

  117. Zhang L, Wang X, Zhao Y, Zhu Z, Fong H. Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Mater Lett. 2012;68:133–6.

    Article  Google Scholar 

  118. Lee JS, Kwon OS, Park SJ, Park EY, You SA, Yoon H, et al. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano. 2011;5(10):7992–8001.

    Article  Google Scholar 

  119. Tans SJ, Verschueren AR, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393(6680):49.

    Article  Google Scholar 

  120. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, et al. Nanotube molecular wires as chemical sensors. Science. 2000;287(5453):622–5.

    Article  Google Scholar 

  121. Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater. 2001;13(18):1384–6.

    Article  Google Scholar 

  122. Leghrib R, Llobet E. Quantitative trace analysis of benzene using an array of plasma-treated metal-decorated carbon nanotubes and fuzzy adaptive resonant theory techniques. Anal Chim Acta. 2011;708(1–2):19–27.

    Article  Google Scholar 

  123. Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.

    Article  Google Scholar 

  124. Villalpando-Paez F, Romero A, Munoz-Sandoval E, Martınez L, Terrones H, Terrones M. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett. 2004;386(1–3):137–43.

    Article  Google Scholar 

  125. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano. 2011;5(9):6955–61.

    Article  Google Scholar 

  126. Gottardi G, Galli E. Natural zeolites. New York: Springer; 2012.

    Google Scholar 

  127. Long JR, Yaghi OM. The pervasive chemistry of metal–organic frameworks. Chem Soc Rev. 2009;38(5):1213–4.

    Article  Google Scholar 

  128. O’Keeffe M. Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev. 2009;38(5):1215–7.

    Article  Google Scholar 

  129. Perry Iv JJ, Perman JA, Zaworotko MJ. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev. 2009;38(5):1400–17.

    Article  Google Scholar 

  130. James SL. Metal–organic frameworks. Chem Soc Rev. 2003;32(5):276–88.

    Article  Google Scholar 

  131. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal–organic frameworks. Science. 2013;341(6149):1230444.

    Article  Google Scholar 

  132. Lu Z-Z, Zhang R, Li Y-Z, Guo Z-J, Zheng H-G. Solvatochromic behavior of a nanotubular metal–organic framework for sensing small molecules. J Am Chem Soc. 2011;133(12):4172–4.

    Article  Google Scholar 

  133. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal–organic framework materials as chemical sensors. Chem Rev. 2011;112(2):1105–25.

    Article  Google Scholar 

  134. Lee J-H, Houk R, Robinson A, Greathouse J, Thornberg S, Allendorf M, et al., editors. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection. In: Micro-and nanotechnology sensors, systems, and applications II. International Society for Optics and Photonics; 2010.

  135. Cote AP, Benin AI, Ockwig NW, O’keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166–70.

    Article  Google Scholar 

  136. Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42(2):548–68.

    Article  Google Scholar 

  137. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev. 2012;41(18):6010–22.

    Article  Google Scholar 

  138. Das G, Biswal BP, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem Sci. 2015;6(7):3931–9.

    Article  Google Scholar 

  139. Li Z, Zhang Y, Xia H, Mu Y, Liu X. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem Commun. 2016;52(39):6613–6.

    Article  Google Scholar 

  140. Ding S-Y, Dong M, Wang Y-W, Chen Y-T, Wang H-Z, Su C-Y, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc. 2016;138(9):3031–7.

    Article  Google Scholar 

  141. Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: a review. Polym Plast Technol Eng. 2011;50(14):1475–86.

    Article  Google Scholar 

  142. Gerlach G, Guenther M, Suchaneck G, Sorber J, Arndt KF, Richter A, editors. Application of sensitive hydrogels in chemical and pH sensors. In: Macromolecular symposia. Wiley Online Library; 2004.

  143. Trinh QT, Gerlach G, Sorber J, Arndt K-F. Hydrogel-based piezoresistive pH sensors: design, simulation and output characteristics. Sens Actuat B Chem. 2006;117(1):17–26.

    Article  Google Scholar 

  144. Kojima J, Nakayama Y, Takenaka M, Hashimoto T. Apparatus for measuring time-resolved light scattering profiles from supercritical polymer solutions undergoing phase separation under high pressure. Rev Sci Instrum. 1995;66(8):4066–72.

    Article  Google Scholar 

  145. Zguris J, Pishko MV. Nitric oxide sensitive fluorescent poly(ethylene glycol) hydrogel microstructures. Sens Actuat B Chem. 2006;115(1):503–9.

    Article  Google Scholar 

  146. Herber S, Olthuis W, Bergveld P, van den Berg A. Exploitation of a pH-sensitive hydrogel disk for CO2 detection. Sens Actuat B Chem. 2004;103(1–2):284–9.

    Article  Google Scholar 

  147. Bai H, Sheng K, Zhang P, Li C, Shi G. Graphene oxide/conducting polymer composite hydrogels. J Mater Chem. 2011;21(46):18653–8.

    Article  Google Scholar 

  148. Wu J, Tao K, Zhang J, Guo Y, Miao J, Norford LK. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J Mater Chem A. 2016;4(21):8130–40.

    Article  Google Scholar 

  149. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  Google Scholar 

  150. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818.

    Article  Google Scholar 

  151. Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem. 2005;383(1):83–91.

    Article  Google Scholar 

  152. Berezovski M, Musheev M, Drabovich A, Krylov SN. Non-SELEX selection of aptamers. J Am Chem Soc. 2006;128(5):1410–1.

    Article  Google Scholar 

  153. Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed. 2009;48(35):6494–8.

    Article  Google Scholar 

  154. Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed. 2006;45(48):8149–52.

    Article  Google Scholar 

  155. Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009;10(5):862–8.

    Article  Google Scholar 

  156. Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008;7(5):2133–9.

    Article  Google Scholar 

  157. Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, et al. Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano. 2012;6(8):6659–66.

    Article  Google Scholar 

  158. He Y, Xing X, Tang H, Pang D. Graphene oxide-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA. Small. 2013;9(12):2097–101.

    Article  Google Scholar 

  159. Sun W, Shi S, Yao T. Graphene oxide–Ru complex for label-free assay of DNA sequence and potassium ions via fluorescence resonance energy transfer. Anal Methods. 2011;3(11):2472–4.

    Article  Google Scholar 

  160. Wen Y, Xing F, He S, Song S, Wang L, Long Y, et al. A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun. 2010;46(15):2596–8.

    Article  Google Scholar 

  161. Zhang JR, Huang WT, Xie WY, Wen T, Luo HQ, Li NB. Highly sensitive, selective, and rapid fluorescence Hg2+ sensor based on DNA duplexes of poly(dT) and graphene oxide. Analyst. 2012;137(14):3300–5.

    Article  Google Scholar 

  162. Staii C, Johnson AT, Chen M, Gelperin A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005;5(9):1774–8.

    Article  Google Scholar 

  163. So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, et al. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small. 2008;4(2):197–201.

    Article  Google Scholar 

  164. Lian Y, He F, Wang H, Tong F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens Bioelectron. 2015;65:314–9.

    Article  Google Scholar 

  165. Angioy AM, Desogus A, Barbarossa IT, Anderson P, Hansson BS. Extreme sensitivity in an olfactory system. Chem Senses. 2003;28(4):279–84.

    Article  Google Scholar 

  166. Kaupp UB. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci. 2010;11(3):188.

    Article  Google Scholar 

  167. Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E. Advances in the identification and characterization of olfactory receptors in insects. In: Progress in molecular biology and translational science: Elsevier; 2015. p. 55–80.

  168. Khadka R, Aydemir N, Carraher C, Hamiaux C, Colbert D, Cheema J, et al. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens Bioelectron. 2019;126:207–13.

    Article  Google Scholar 

  169. Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev. 2013;65(15):2098–110.

    Article  Google Scholar 

Download references

Acknowledgements

The review of existing literature for this article was carried out with funding from US Office of Naval Research (Grant Number N62909-17-1-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. McDaid.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

The article does not contain any studies with human or animal participants that were carried out by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraj, H., Aw, K.C. & McDaid, A.J. Review of functional materials for potential use as wearable infection sensors in limb prostheses. Biomed. Eng. Lett. 10, 43–61 (2020). https://doi.org/10.1007/s13534-019-00132-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00132-w

Keywords

Navigation