Skip to main content
Log in

Application of cellular micropatterns to miniaturized cell-based biosensor

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Because of strong demands for high throughput or high content cell-based assay, significant efforts have focused on the assay miniaturization by fabricating cell microarray using a variety of cell patterning techniques such as spotting, photolithography or soft lithography and by integrating cell microarray into microfluidic devices. Response of cells cultured on microarray can be monitored by using either electrochemical or optical detection methods. Impedancebased detection and potential-based detection have been widely used for electrochemical detection, while optical detection relies mostly on the fluorescence and bioluminescence-based techniques. Resultant cell microarray-based biosensor can be applied for high throughput/content drug screening and detection of pathogens, pollutants and warfare agents. For the successful application of cell-based biosensors to various areas, multi-phenotypic cell microarray should be developed and cells on microarray must be cultured in 3-dimensional environment as they do in real tissue to obtain accurate response of cells against target analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. Development and application of cell-based biosensors. Ann Biomed Eng. 1999; 27:697–711.

    Article  Google Scholar 

  2. Castel D, Pitaval A, Debily M-A, Gidrol X. Cell microarrays in drug discovery. Drug Discov Today. 2006; 11:616–622.

    Article  Google Scholar 

  3. Sundberg SA. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol. 2000; 11:47–53.

    Article  Google Scholar 

  4. Bhatia SN, Yarmush ML, Toner M. Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts. J Biomed Mater Res. 1997; 34:189–199.

    Article  Google Scholar 

  5. Kleinfeld D, Kahler KH, Hockberger PE. Controlled outgrowth of dissociated neurons on patterned substrates. J Neurosci. 1988; 8:4098–4120.

    Google Scholar 

  6. Matsuda T, Inoue K. Novel photoreactive surface modification technology for fabricated devices. ASAIO Trans. 1990; 36:M161–M164.

    Google Scholar 

  7. Matsuda T, Inoue K, Sugawara T. Development of micropatterning technology for cultured cells. ASAIO Trans. 1990; 36:M559–M562.

    Google Scholar 

  8. Matsuda T, Sugawara T. Development of surface photochemical modification method for micropatterning of cultured-cells. J Biomed Mater Res. 1995; 29:749–756.

    Article  Google Scholar 

  9. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Progr. 1998; 14:356–363.

    Article  Google Scholar 

  10. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM, Ingber DE. Engieering cell-shape and function. Science. 1994; 264:696–698.

    Article  Google Scholar 

  11. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000; 21:27–40.

    Article  Google Scholar 

  12. Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H. Microfluidic networks for chemical patterning of substrate: Design and application to bioassays. J Am Chem Soc. 1998; 120:500–508.

    Article  Google Scholar 

  13. Ito Y. Surface micropatterning to regulate cell functions. Biomaterials. 1999; 20:2333–2342.

    Article  Google Scholar 

  14. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999; 20:2363–2376.

    Article  Google Scholar 

  15. Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG, Taylor DL. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev Biotechnol. 2001; 21:111–154.

    Article  Google Scholar 

  16. Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol Progr. 2003; 19:243–253.

    Article  Google Scholar 

  17. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001; 3:335–373.

    Article  Google Scholar 

  18. Keese CR, Giaever I. A biosensor that monitors cell morpholgy with electrical fields. IEEE Eng Med Biol. 1994; 13:402–408.

    Article  Google Scholar 

  19. Ehret R, Baumann W, Brischwein M, Schwinde A, Wolf B. On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Med Biol Eng Comput. 1998; 36:365–370.

    Article  Google Scholar 

  20. Giaever I, Keese CR. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE T Bio-med Eng. 1986; 33:242–247.

    Article  Google Scholar 

  21. Mitra P, Keese CR, Giaever I. Electric measurements can be used to mornitor the attachment and spreading of cells in tissue-culture. Biotechniques. 1991; 11:504–510.

    Google Scholar 

  22. Kowolenko M, Keese CR, Lawrence DA, Giaever I. Measurement of macrophage adherence and spreading with weak electric-fields. J Immunol Methods. 1990; 127:71–77.

    Article  Google Scholar 

  23. Tiruppathi C, Malik AB, Delvecchio PJ, Keese CR, Giaever I. Electrical method for detection of endothelial-cell shape change in real-time — assesment of endothelial barrier function. P Natl Acad Sci USA. 1992; 89:7919–7923.

    Article  Google Scholar 

  24. Giaever I, Keese CR. A morphological biosensor for mammalian-cells. Nature. 1993; 366:591–592.

    Article  Google Scholar 

  25. Heppner TJ, Fiekers JF. VX enhances neuronal excitability and alters membrane-properties of rana-catesbeiana sympatheticganglion neurons. Comp Biochem Phys C. 1992; 102:335–338.

    Article  Google Scholar 

  26. Kowtha VC, Bryant HJ, Krauthamer V, Iwasa KH, Stenger DA. Spontaneous firing of NG108-15 cells induced by transient exposure to ammonium chloride. Cell Mol Neurobiol. 1996; 16:1–9.

    Article  Google Scholar 

  27. Skeen RS, Kisaalita WS, Vanwie BJ, Fung SJ, Barnes CD. Evaluation of neuron-based sensing with the neurotransmitter serotonin. Biosens Bioelectron. 1990; 5:491–510.

    Article  Google Scholar 

  28. Connolly P, Moores GR, Monaghan W, Shen J, Britland S, Clark P. Microelectronic and nanoelectronic interfacing techniques for biological-systems. Sensor Actuat B-Chem. 1992; 6:113–121.

    Article  Google Scholar 

  29. Yea CH, Min J, Choi JW. The fabrication of cell chips for use as bio-sensors. Biochip J. 2007; 1:219–227.

    Google Scholar 

  30. Thomas CA, Jr., Springer PA, Loeb GE, Berwald-Netter Y, Okun LM. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972; 74:61–66.

    Article  Google Scholar 

  31. Gross GW. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE T Bio-med Eng. 1979; BME-26:273–279.

    Article  Google Scholar 

  32. Gross GW, Williams AN, Lucas JH. Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture. J Neurosci Meth. 1982; 5:13–22.

    Article  Google Scholar 

  33. Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Meth. 1980; 2:19–31.

    Article  Google Scholar 

  34. Israel DA, Barry WH, Edell DJ, Mark RG. An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol. 1984; 247:H669–H674.

    Google Scholar 

  35. Connolly P, Clark P, Curtis ASG, Dow JAT, Wilkinson CDW. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron. 1990; 5:223–234.

    Article  Google Scholar 

  36. Bhunia AK, Banada P, Banerjee P, Valadez A, Hirleman ED. Light scattering, fiber optic- and cell-based sensors for sensitive detection of foodborne pathogens. J Rapid Meth Aut Mic. 2007; 15:121–145.

    Article  Google Scholar 

  37. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA. A B cell-based sensor for rapid identification of pathogens. Science. 2003; 301:213–215.

    Article  Google Scholar 

  38. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene-expression. Science. 1994; 263:802–805.

    Article  Google Scholar 

  39. Yeh E, Gustafson K, Boulianne GL. Green fluorescent protein as a vital marker and reporter of gene-expression in drosophila. P Natl Acad Sci USA. 1995; 92:7036–7040.

    Article  Google Scholar 

  40. Girotti M, Banting G. TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38. J Cell Sci. 1996; 109:2915–2926.

    Google Scholar 

  41. Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T. Chimeric green fluorescenct protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995; 5:635–642.

    Article  Google Scholar 

  42. Nikolai TJ, Peshwa MV, Goetghebeur S, Hu W-S. Improced microscopic observation of mammalian-cells on microcarriers by fluorescent staining. Cytotechnology. 1991; 5:141–146.

    Article  Google Scholar 

  43. Declerck LS, Bridts CH, Mertens AM, Moens MM, Stevens WJ. Use of fluorescent dyes in the determination of adherence of human-leukocytes to endothelial-cells and the effect of fluorochromes on cellular function. J Immunol Methods. 1994; 172:115–124.

    Article  Google Scholar 

  44. Simon S, Roy D, Schindler M. Intracellular pH and the control of multidrug-resistance. P Natl Acad Sci USA. 1994; 91:1128–1132.

    Article  Google Scholar 

  45. Meisenholder GW, Martin SJ, Green DR, Nordberg J, Babior BM, Gottlieb RA. Events in apoptosis — Acidification is downstream of protease activation and BCL-2 protection. J Biol Chem. 1996; 271:16260–16262.

    Article  Google Scholar 

  46. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T. Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Edit. 1999; 38:3209–3212.

    Article  Google Scholar 

  47. Sams-Dodd F. Drug discovery: selecting the optimal approach. Drug Discov Today. 2006; 11:465–472.

    Article  Google Scholar 

  48. Khandurina J, Guttman A. Microchip-based high-throughput screening analysis of combinatorial libraries. Curr Opin Chem Biol. 2002; 6:359–366.

    Article  Google Scholar 

  49. Croston GE. Functional cell-based uHTS in chemical genomic drug discovery. Trends Biotechnol. 2002; 20:110–115.

    Article  Google Scholar 

  50. Hong J. Microfluidic systems for high throughput screening. Biochip J. 2008; 2:12–26.

    Google Scholar 

  51. Abraham VC, Taylor DL, Haskins JR. High content screening applied to large-scale cell biology. Trends Biotechnol. 2004; 22:15–22.

    Article  Google Scholar 

  52. MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol. 2005; 7:591–600.

    Article  Google Scholar 

  53. Mere L, Bennett T, Coassin P, England P, Hamman B, Rink T, Zimmerman S, Negulescu P. Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discov Today. 1999; 4:363–369.

    Article  Google Scholar 

  54. Baghdoyan S, Roupioz Y, Pitaval A, Castel D, Khomyakova E, Papine A, Soussaline F, Gidrol X. Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res. 2004; 32:e77.

    Article  Google Scholar 

  55. Wheeler DB, Bailey SN, Guertin DA, Carpenter AE, Higgins CO, Sabatini DM. RNAi living-cell microarrays for loss-offunction screens in Drosophila melanogaster cells. Nat Methods. 2004; 1:127–132.

    Article  Google Scholar 

  56. Angenendt P, Nyarsik L, Szaflarski W, Glökler J, Nierhaus KH, Lehrach H, Cahill DJ, Lueking A. Cell-free protein expression and functional assay in nanowell chip format. Anal Chem. 2004; 76:1844–1849.

    Article  Google Scholar 

  57. Stephan JP, Schanz S, Wong A, Schow P, Wong WLT. Development of a frozen cell array as a high-throughput approach for cell-based analysis. Am J Pathol. 2002; 161:787–797.

    Article  Google Scholar 

  58. Oode K, Furuya T, Harada K, Kawauchi S, Yamamoto K, Hirano T, Sasaki K. The development of a cell array and its combination with laser-scanning cytometry allows a highthroughput analysis of nuclear DNA content. Am J Pathol. 2000; 157:723–728.

    Article  Google Scholar 

  59. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005; 26:93–99.

    Article  Google Scholar 

  60. Schwenk JM, Stoll D, Templin MF, Joos TO. Cell microarrays: An emerging technology for the characterization of antibodies. Biotechniques. 2002; 54–61.

    Google Scholar 

  61. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem. 2002; 74:3362–3371.

    Article  Google Scholar 

  62. Gray DS, Tan JL, Voldman J, Chen CS. Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron. 2004; 19:1765–1774.

    Article  Google Scholar 

  63. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006; 442:403–411.

    Article  Google Scholar 

  64. Andersson H, van den Berg A. Microfluidic devices for cellomics: a review. Sensor Actuat B-Chem. 2003; 92:315–325.

    Article  Google Scholar 

  65. Krishnan M, Namasivayam V, Lin R, Pal R, Burns MA. Microfabricated reaction and separation systems. Curr Opin Biotech. 2001; 12:92–98.

    Article  Google Scholar 

  66. Sanders GHW, Manz A. Chip-based microsystems for genomic and proteomic analysis. TrAC-Trend Anal Chem. 2000; 19:364–378.

    Article  Google Scholar 

  67. Figeys D, Pinto D. Lab-on-a-chip: A revolution in biological and medical sciences. Anal Chem. 2000; 72:330A–335A.

    Google Scholar 

  68. Walker GM, Ozers MS, Beebe DJ. Insect cell culture in microfluidic channels. Biomed Microdevices. 2002; 4:161–166.

    Article  Google Scholar 

  69. McClain MA, Culbertson CT, Jacobson SC, Ramsey JM. Flow cytometry of Escherichia coli on microfluidic devices. Anal Chem. 2001; 73:5334–5338.

    Article  Google Scholar 

  70. Khandurina J, Guttman A. Bioanalysis in microfluidic devices. J Chromatogr A. 2002; 943:159–183.

    Article  Google Scholar 

  71. Li PCH, Harrison DJ. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem. 1997; 69:1564–1568.

    Article  Google Scholar 

  72. Kapur R, Giuliano KA, Campana M, Adams T, Olson K, Jung D, Mrksich M, Vasudevan C, Taylor DL. Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the cellchip? system. Biomed Microdevices. 1999; 2:99–109.

    Article  Google Scholar 

  73. Baxter GT, Bousse LJ, Dawes TD, Libby JM, Modlin DN, Owicki JC, Parce JW. Microfabrication in silicon microphysiometry. Clin Chem. 1994; 40:1800–1804.

    Google Scholar 

  74. Bousse L. Whole cell biosensors. Sensor Actuat B-Chem. 1996; 34:270–275.

    Article  Google Scholar 

  75. Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog. 2004; 20:316–323.

    Article  Google Scholar 

  76. Li AP, Bode C, Sakai Y. A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem-Biol Interact. 2004; 150:129–136.

    Article  Google Scholar 

  77. Baudoin R, Griscom L, Monge M, Legallais C, Leclerc E. Development of a renal microchip for in vitro distal tubule models. Biotechnol Prog. 2007; 23:1245–1253.

    Google Scholar 

  78. Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R, Samson LD, Tannenbaum SR, Griffith LG. A microscale in vitro physiological model of the liver: Predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005; 6:569–591.

    Article  Google Scholar 

  79. Walker GM, Monteiro-Riviere N, Rouse J, O’Neill AT. A linear dilution microfluidic device for cytotoxicity assays. Lab Chip. 2007; 7:226–232.

    Article  Google Scholar 

  80. Paddle BM. Biosensors for chemical and biological agents of defence interest. Biosens Bioelectron. 1996; 11:1079–1113.

    Article  Google Scholar 

  81. Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol. 2001; 19:304–309.

    Article  Google Scholar 

  82. Gu MB, Mitchell RJ, Kim BC. Whole-cell-based biosensors for environmental biomonitoring and application. In: Zhong JJ, editor. Biomanufacturing. Berlin Heidelberg: Springer; 2004. pp. 269–305.

    Chapter  Google Scholar 

  83. Gross GW, Harsch A, Rhoades BK, Göpel W. Odor, drug and toxin analysis with neuronal networks in vitro: Extracellular array recording of network responses. Biosens Bioelectron. 1997; 12:373–393.

    Article  Google Scholar 

  84. Chang JC, Brewer GJ, Wheeler BC. Modulation of neural network activity by patterning. Biosens Bioelectron. 2001; 16:527–533.

    Article  Google Scholar 

  85. Breckenridge LJ, Wilson RJ, Connolly P, Curtis AS, Dow JA, Blackshaw SE, Wilkinson CD. Advantages of uisng microfabricated extacellular electrodes for in-vitro neuronal recording. J Neurosci Res. 1995; 42:266–276.

    Article  Google Scholar 

  86. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods. 1999; 93:61–67.

    Article  Google Scholar 

  87. Aravanis AM, DeBusschere BD, Chruscinski AJ, Gilchrist KH, Kobilka BK, Kovacs GT. A genetically engineered cellbased biosensor for functional classification of agents. Biosens Bioelectron. 2001; 16:571–577.

    Article  Google Scholar 

  88. DeBusschere BD, Kovacs GT. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron. 2001; 16:543–556.

    Article  Google Scholar 

  89. Gilchrist KH, Barker VN, Fletcher LE, DeBusschere BD, Ghanouni P, Giovangrandi L, Kovacs GT. General purpose, field-portable cell-based biosensor platform. Biosens Bioelectron. 2001; 16:557–564.

    Article  Google Scholar 

  90. Pancrazio JJ, Bey PP, Cuttino DS, Kusel JK, Borkholder DA, Shaffer KM, Kovacs GT, Stenger DA. Portable cell-based biosensor system for toxin detection. Sensor Actuat B-Chem. 1998; 53:179–185.

    Article  Google Scholar 

  91. Pancrazio JJ, Gray SA, Shubin YS, Kulagina N, Cuttino DS, Shaffer KM, Eisemann K, Curran A, Zim B, Gross GW, O’Shaughnessy TJ. A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens Bioelectron. 2003; 18:1339–1347.

    Article  Google Scholar 

  92. Koh WG, Revzin A, Pishko MV. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir. 2002; 18:2459–2462.

    Article  Google Scholar 

  93. Quinn CP, Pathak CP, Heller A, Hubbell JA. Photo-cross-linked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of Biosensors. Biomaterials. 1995; 16:389–396.

    Article  Google Scholar 

  94. Csoeregi E, Quinn CP, Schmidtke DW, Lindquist S-E, Pishko MV, Ye L, Katakis I, Hubbell JA, Heller A. Design, characterization, and one-point in-vivo calibration of a subcutaneously implanted glucose electrode. Anal Chem. 1994; 66:3131–3138.

    Article  Google Scholar 

  95. Sirkar K, Pishko MV. Amperometric biosensors based on oxidoreductases immobilized in photopolymerized poly(ethylene glycol) redox polymer hydrogels. Anal Chem. 1998; 70:2888–2894.

    Article  Google Scholar 

  96. Pathak CP, Sawhney AS, Hubbell JA. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J Am Chem Soc. 1992; 114:8311–8312.

    Article  Google Scholar 

  97. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001; 22:3045–3051.

    Article  Google Scholar 

  98. Mellott MB, Searcy K, Pishko MV. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials. 2001; 22:929–941.

    Article  Google Scholar 

  99. Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998; 19:1287–1294.

    Article  Google Scholar 

  100. Russell RJ, Axel AC, Shields KL, Pishko MV. Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing. Polymer. 2001; 42:4893–4901.

    Article  Google Scholar 

  101. Padmavathi NC, Chatterji PR. Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules. 1996; 29:1976–1979.

    Article  Google Scholar 

  102. Koh WG, Pishko MV. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem. 2006; 385:1389–1397.

    Article  Google Scholar 

  103. Itle LJ, Pishko MV. Multiphenotypic whole-cell sensor for viability screening. Anal Chem. 2005; 77:7887–7893.

    Article  Google Scholar 

  104. Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJ, Ismagilov RF, Whitesides GM. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Natl Acad Sci USA. 1999; 96:5545–5548.

    Article  Google Scholar 

  105. Koh WG, Itle LJ, Pishko MV. Molding of hydrogel multiphenotype cell microstructures to create microarrays. Anal Chem. 2003; 75:5783–5789.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Gun Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J., Han, S.W., Chung, U.S. et al. Application of cellular micropatterns to miniaturized cell-based biosensor. Biomed. Eng. Lett. 3, 117–130 (2013). https://doi.org/10.1007/s13534-013-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0103-1

Keywords

Navigation