Skip to main content
Log in

Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes microfluidic systems containing immobilized hydrogel-encapsulated mammalian cells that can be used as cell-based biosensors. Mammalian cells were encapsulated in three-dimensional poly(ethylene glycol)(PEG) hydrogel microstructures which were photolithographically polymerized in microfluidic devices and grown under static culture conditions. The encapsulated cells remained viable for a week and were able to carry out enzymatic reactions inside the microfluidic devices. Cytotoxicity assays proved that small molecular weight toxins such as sodium azide could easily diffuse into the hydrogel microstructures and kill the encapsulated cells, which resulted in decreased viability. Furthermore, heterogeneous hydrogel microstructures encapsulating two different phenotypes in discrete spatial locations were also successfully fabricated inside microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5
Fig. 6a–b
Fig. 7

Similar content being viewed by others

References

  1. Sundberg CJ (2000) Curr Opin Biotechnol 11:47–53

    Article  CAS  Google Scholar 

  2. Khandurina J, Guttman A (2002) Curr Opin Chem Biol 6:359–366

    Article  CAS  Google Scholar 

  3. Bousse L (1996) Sens Actuators B 34:270–275

    Article  Google Scholar 

  4. O’Connor SM, Andreadis JD, Shaffer KM, Ma W, Pancrazio JJ, Stenger DA (2000) Biosens Bioelectron 14:871–881

    Article  CAS  Google Scholar 

  5. Park TH, Shuler ML (2003) Biotechnol Prog 19:243–253

    Article  CAS  Google Scholar 

  6. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Biotechnol Prog 14:356–363

    Article  CAS  Google Scholar 

  7. Folch A, Toner M (2000) Annu Rev Biomed Eng 2:227–256

    Article  CAS  Google Scholar 

  8. Ito Y (1999) Biomaterials 20:2333–2342

    Article  CAS  Google Scholar 

  9. Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG, Taylor DL (2001) Crit Rev Biotechnol 21:111–154

    Article  CAS  Google Scholar 

  10. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20:2363–2376

    Article  CAS  Google Scholar 

  11. Matsuda T, Sugawara T (1995) J Biomed Mater Res 29:749–756

    Article  CAS  Google Scholar 

  12. Singhvi R, Kumer A, Lopez GP, Stephanopoulos GN, Daniel IC, Wang DIC, Whitesides GM, Ingber DE (1994) Science 264:696–698

    Article  CAS  Google Scholar 

  13. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  14. Koh W, Revzin A, Simonian A, Reeves T, Pishko MV (2003) Biomed Microdev 5:11–19

    Article  CAS  Google Scholar 

  15. Amirpour ML, Ghosh P, Lackowski WM, Crooks RM, Pishko MV (2001) Anal Chem 73:1560–1566

    Article  CAS  Google Scholar 

  16. Koh W, Revzin A, Pishko MV (2002) Langmuir 18:2459–2462

    Article  CAS  Google Scholar 

  17. Koh W, Itle LJ, Pishko MV (2003) Anal Chem 75:5783–5789

    Article  CAS  Google Scholar 

  18. Revzin A, Russell RJ, Yadavalli VK, Koh W, Deister C, Hile DD, Mellott MB, Pishko MV (2001) Langmuir 17:5440–5447

    Article  CAS  Google Scholar 

  19. Russell RJ, Simonian A, Wild J, Pishko MV (1999) Anal Chem 71:4909–4912

    Article  CAS  Google Scholar 

  20. Heo J, Thomas KJ, Seong GH, Crooks RM (2003) Anal Chem 75:22–26

    Article  CAS  Google Scholar 

  21. Koh W, Pishko MV (2003) Langmuir 19:10310–10316

    Article  CAS  Google Scholar 

  22. Sirkar K, Pishko MV (1998) Anal Chem 70:2888–2894

    Article  CAS  Google Scholar 

  23. Zhan W, Seong GH, Crooks RM (2002) Anal Chem 74:4647–4652

    Article  CAS  Google Scholar 

  24. Seong GH, Zhan W, Crooks RM (2002) Anal Chem 74:3372–3377

    Article  CAS  Google Scholar 

  25. Olsen KG, Ross DJ, Tarlov MJ (2002) Anal Chem 74:1436–1441

    Article  CAS  Google Scholar 

  26. Liu VA, Bhatia SN (2002) Biomed Microdev 4:257–256

    Article  CAS  Google Scholar 

  27. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B (2000) Nature 404:588–590

    Article  CAS  Google Scholar 

  28. Li PCH, Harrison DJ (1997) Anal Chem 69:1564–1568

    Article  CAS  Google Scholar 

  29. Leclerc E, Sakai Y, Fujii T (2003) Biomed Microdev 5:109–114

    Google Scholar 

  30. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Anal Chem 75:3581–3586

    Article  CAS  Google Scholar 

  31. Griffith LG, Naughton G (2002) Science 295:1009–1014

    Article  CAS  Google Scholar 

  32. Strain AJ, Neuberger JM (2002) Science 295:1005–1009

    Article  CAS  Google Scholar 

  33. Walker GM, Ozers MS, Beebe DJ (2002) Biomed Microdev 4:161–166

    Article  CAS  Google Scholar 

  34. Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM (1999) Proc Natl Acad Sci USA 96:5545–5548

    Article  CAS  Google Scholar 

  35. Hediger S, Fontannaz J, Sayah A, Hunziker W, Gijs MAM (2000) Sens Actuators B 63:63–73

    Article  Google Scholar 

  36. Krishnan M, Namasivayam V, Lin RS, Pal R, Burns MA (2001) Curr Opin Biotechnol 12:92–98

    Article  CAS  Google Scholar 

  37. Sanders GHW, Manz A (2000) Trends Anal Chem 19:364–378

    Article  CAS  Google Scholar 

  38. Figeys D, Pinto D (2000) Anal Chem 72:330A–335A

    Article  CAS  Google Scholar 

  39. Koch M, Evans A, Brunnschweiler A (2000) Microfluidic technology and applications. Research Studies Press Ltd., Baldock, UK

  40. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  41. Mata A, Fleischman AJ, Roy S (2005) Biomed Microdev 7:281–293

    Article  CAS  Google Scholar 

  42. Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, McDonald JC, Wu HK, Whitesides SH, Whitesides GM (2000) Anal Chem 72:3158–3164

    Article  CAS  Google Scholar 

  43. Charati SG, Stern SA (1998) Macromolecules 31:5529–5535

    Article  CAS  Google Scholar 

  44. Ertel S, Ratner B, Kaul A, Schway M, Horbett T (1994) J Biomed Mater Res 28:667–675

    Article  CAS  Google Scholar 

  45. Mellott MB, Searcy K, Pishko MV (2001) Biomaterials 22:929–941

    Article  CAS  Google Scholar 

  46. Cruise GM, Scharp DS, Hubbell JA (1998) Biomaterials 19:1287–1294

    Article  CAS  Google Scholar 

  47. Peppas NA, Bar-Howel BD (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton, FL, pp 27–56

    Google Scholar 

  48. Canal T, Peppas NA (1989) J Biomed Mater Res 23:1183–1193

    Article  CAS  Google Scholar 

  49. Bhatia SN, Yarmush ML, Toner M (1997) J Biomed Mater Res 34:189–199

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work described in this paper was supported by a grant from the National Aeronautics and Space Administration (NASA, NAG 91277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Gun Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, WG., Pishko, M.V. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 385, 1389–1397 (2006). https://doi.org/10.1007/s00216-006-0571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0571-6

Keywords

Navigation