Skip to main content
Log in

Punica granatum and Citrus limetta biowaste-derived sorbents for the removal of heavy metals and organic compounds: sustainability perspectives

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The occurrence of heavy metals and organic compounds in wastewater is a significant environmental concern. Citrus-based biowaste materials, specifically Punica granatum peels (PGP) and Citrus limetta peels (CLP), offer a promising solution as sorbents for the removal of such contaminants. These agricultural byproducts, typically discarded, possess inherent adsorption capabilities beneficial for wastewater treatment. PGP and CLP, abundant and eco-friendly, offer advantages such as low cost and renewability, aligning with sustainability objectives. Their porous structure facilitates efficient adsorption of pollutants, including various metals and organic compounds, from aqueous systems. This study provides insights into the significant role of PGP and CLP in addressing water pollution. The utilization of biowaste as potential sorbents not only addresses the pressing environmental issue of wastewater pollution but also aligns with the principles of the circular bioeconomy by repurposing agricultural byproducts that would otherwise be discarded, thus promoting resource efficiency and sustainability throughout the value chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res 28:9050–9066. https://doi.org/10.1007/s11356-021-12395-x

    Article  Google Scholar 

  2. Morin-Crini N, Lichtfouse E, Fourmentin M, Ribeiro ARL, Noutsopoulos C, Mapelli F, Fenyvesi É, Vieira MGA, Picos-Corrales LA, Moreno-Piraján JC, Giraldo L (2022) Removal of emerging contaminants from wastewater using advanced treatments. A Rev Environ Chem Lett 20(2):1333–1375. https://doi.org/10.1007/s10311-021-01379-5

    Article  Google Scholar 

  3. Suri S, Singh A, Nema PK (2022) Current applications of citrus fruit processing waste: a scientific outlook. Appl Food Res 2(1):100050. https://doi.org/10.1016/j.afres.2022.100050

    Article  Google Scholar 

  4. Meng H, Nie C, Li W, Duan X, Lai B, Ao Z, Wang S, An T (2020) Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples. J Hazard Mater 399:123043. https://doi.org/10.1016/j.jhazmat.2020.123043

    Article  Google Scholar 

  5. Selvarajoo A, Wong YL, Khoo KS, Chen WH, Show PL (2022) Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere 294:133671. https://doi.org/10.1016/j.chemosphere.2022.133671

    Article  Google Scholar 

  6. Bilal M, Ihsanullah I, Younas M, Shah MUH (2021) Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep Purif Technol 278, 119510. https://doi.org/10.1016/J.SEPPUR.2021.119510

  7. Mahato N, Agarwal P, Mohapatra D, Sinha M, Dhyani A, Pathak B, Angaiah S (2021) Biotransformation of citrus waste-II: bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water. Processes 9(9):1544. https://doi.org/10.3390/pr9091544

    Article  Google Scholar 

  8. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA (2021) A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 4:100209. https://doi.org/10.1016/j.clet.2021.100209

    Article  Google Scholar 

  9. Abed L, Belattar N (2022) Polyphenols content, chelating properties and adsorption isotherms and kinetics of red and yellow pomegranate peels (Punica granatum L.) Towards Lead (II). Pol J Environ Stud 31(6). https://doi.org/10.15244/pjoes/152381

  10. Bilal M, Ihsanullah I, Shah MUH, Reddy AVB, Aminabhavi TM (2022) Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J Environ Manage 321:115981. https://doi.org/10.1016/j.jenvman.2022.115981

    Article  Google Scholar 

  11. Yang C, Chen H, Chen H, Zhong B, Luo X, Chun J (2017) Antioxidant and anticancer activities of essential oil from Gannan navel orange peel. Molecules 22:1391. https://doi.org/10.3390/molecules22081391

    Article  Google Scholar 

  12. Elansary HO, Abdelgaleil SA, Mahmoud EA, Yessoufou K, Elhindi K, El-Hendawy S (2018) Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement Altern Med 18(1):1–10. https://doi.org/10.1186/s12906-018-2262-1

    Article  Google Scholar 

  13. Gayathiri M, Pulingam T, Lee KT, Sudesh K (2022) Activated carbon from biomass waste precursors: factors affecting production and adsorption mechanism. Chemosphere 294:133764. https://doi.org/10.1016/j.chemosphere.2022.133764

    Article  Google Scholar 

  14. Ahmed MJ, Hameed BH, Khan MA (2022) Recent advances on activated carbon-based materials for nitrate adsorption: a review. J Anal Appl Pyrol 30:105856. https://doi.org/10.1016/j.jaap.2022.105856

    Article  Google Scholar 

  15. Oladipo B, Ibrahim TH, Ajala SO, Akintunde AM, Taiwo AE, Betiku E (2021) Synthesis of activated carbons for heavy metals removal. Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water 1–31. https://doi.org/10.21608/EJCHEM.2021.72070.3600

  16. Boutaleb Y, Zerdoum R, Bensid N, Abumousa RA, Hattab Z, Bououdina M (2022) Adsorption of Cr (VI) by mesoporous pomegranate peel biowaste from synthetic wastewater under dynamic mode. Water 14(23):3885. https://doi.org/10.3390/w14233885

    Article  Google Scholar 

  17. Rafiaee S, Samani MR, Toghraie D (2020) Removal of hexavalent chromium from aqueous media using pomegranate peels modified by polymeric coatings: effects of various composite synthesis parameters. Synth Met 265:116416. https://doi.org/10.1016/j.synthmet.2020.116416

    Article  Google Scholar 

  18. Ramadan HS, Mobarak M, Lima EC, Bonilla-Petriciolet A, Li Z, Seliem MK (2021) Cr (VI) adsorption onto a new composite prepared from Meidum black clay and pomegranate peel extract: experiments and physicochemical interpretations. J Environ Chem Eng 9(4):105352. https://doi.org/10.1016/J.JECE.2021.105352

    Article  Google Scholar 

  19. Salam FA, Narayanan A (2019) Biosorption—a case study of hexavalent chromium removal with raw pomegranate peel. Desalin Water Treat 156:278–291. https://doi.org/10.5004/dwt.2019.23554

    Article  Google Scholar 

  20. Seliem MK, Mobarak M, Selim AQ, Mohamed EA, Halfaya RA, Gomaa HK, Anastopoulos I, Giannakoudakis DA, Lima EC, Bonilla-Petriciolet A, Dotto GL (2020) A novel multifunctional adsorbent of pomegranate peel extract and activated anthracite for Mn (VII) and Cr (VI) uptake from solutions: experiments and theoretical treatment. J Mol Liq 311:113169. https://doi.org/10.1016/j.molliq.2020.113169

    Article  Google Scholar 

  21. Al-Onazi WA, Ali MH, Al-Garni T (2021) Using pomegranate peel and date pit activated carbon for the removal of cadmium and lead ions from aqueous solution. J Chem 2021:1–13. https://doi.org/10.1155/2021/5514118

    Article  Google Scholar 

  22. Asadollahzadeh H, Ghazizadeh M, Manzari M (2021) Developing a magnetic nanocomposite adsorbent based on carbon quantum dots prepared from Pomegranate peel for the removal of Pb (II) and Cd (II) ions from aqueous solution. Anal Methods Environ Chem J 4(03):33–46. https://doi.org/10.24200/amecj.v4.i03.149

    Article  Google Scholar 

  23. Salmani MH, Abedi M, Mozaffari SA, Mahvi AH, Sheibani A, Jalili M (2021) Simultaneous reduction and adsorption of arsenite anions by green synthesis of iron nanoparticles using pomegranate peel extract. J Environ Health Sci Eng 19:603–612. https://doi.org/10.1007/s40201-021-00631-y

    Article  Google Scholar 

  24. Abedi M, Salmani MH, Mozaffari SA (2016) Adsorption of Cd ions from aqueous solutions by iron modified pomegranate peel carbons: kinetic and thermodynamic studies. Int J Environ Sci Technol 13:2045–2056. https://doi.org/10.1007/s13762-016-1002-7

    Article  Google Scholar 

  25. Poudel BR, Aryal RL, Gautam SK, Ghimire KN, Paudyal H, Pokhrel MR (2021) Effective remediation of arsenate from contaminated water by zirconium modified pomegranate peel as an anion exchanger. J Environ Chem Eng 9(6):106552. https://doi.org/10.1016/j.jece.2021.106552

    Article  Google Scholar 

  26. Bhatnagar A, Minocha AK (2010) Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids Surf, B 76(2):544–548. https://doi.org/10.1016/j.colsurfb.2009.12.016

    Article  Google Scholar 

  27. Ben-Ali S, Jaouali I, Souissi-Najar S, Ouederni A (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod 142:3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    Article  Google Scholar 

  28. Khairy GM, Hesham AM, Jahin HES, El-Korashy SA, Awad YM (2022) Green synthesis of a novel eco-friendly hydrochar from Pomegranate peels loaded with iron nanoparticles for the removal of copper ions and methylene blue from aqueous solutions. J Mol Liq 368:120722. https://doi.org/10.1016/j.molliq.2022.120722

    Article  Google Scholar 

  29. Turkmen Koc SN, Kipcak AS, Moroydor Derun E, Tugrul N (2021) Removal of zinc from wastewater using orange, pineapple and pomegranate peels. Int J Environ Sci Technol 18:2781–2792. https://doi.org/10.1007/s13762-020-03025-z

    Article  Google Scholar 

  30. Mohana MH, Hammood ZA, Hasan MB (2020) Pomegranate peel as adsorbent for Zn removal from aqueous media. Journal of Green Engineering 10:2257–2266

    Google Scholar 

  31. Bellahsen N, Kakuk B, Beszédes S, Bagi Z, Halyag N, Gyulavári T, Kertész S, Amarti AE, Tombácz E, Hodúr C (2021) Iron-loaded pomegranate peel as a bio-adsorbent for phosphate removal. Water 13(19):2709. https://doi.org/10.3390/w13192709

    Article  Google Scholar 

  32. Akram M, Xu X, Gao B, Yue Q, Yanan S, Khan R, Inam MA (2020) Adsorptive removal of phosphate by the bimetallic hydroxide nanocomposites embedded in pomegranate peel. J Environ Sci 91:189–198. https://doi.org/10.1016/j.jes.2020.02.005

    Article  Google Scholar 

  33. Bellahsen N, Varga G, Halyag N, Kertész S, Tombácz E, Hodúr C (2021) Pomegranate peel as a new low-cost adsorbent for ammonium removal. Int J Environ Sci Technol 18:711–722. https://doi.org/10.1007/s13762-020-02863-1

    Article  Google Scholar 

  34. Hodúr C, Bellahsen N, Mikó E, Nagypál V, Šereš Z, Kertész S (2020) The adsorption of ammonium nitrogen from milking parlor wastewater using pomegranate peel powder for sustainable water, resources, and waste management. Sustainability 12(12):4880. https://doi.org/10.3390/su12124880

    Article  Google Scholar 

  35. Abbas M, Harrache Z, Aksil T, Trari M (2022) Removal of indigo carmine (IC) in aqueous solution onto activated pomegranate peel (APP) by adsorption process: Kinetic and thermodynamic studies. J Eng Fibers Fabr 17:15589250211018196. https://doi.org/10.1177/15589250211018195

    Article  Google Scholar 

  36. Ahmad MA, Eusoff MA, Oladoye PO, Adegoke KA, Bello OS (2021) Optimization and batch studies on adsorption of Methylene blue dye using pomegranate fruit peel-based adsorbent. Chemical Data Collections 32:100676. https://doi.org/10.1016/j.cdc.2021.100676

    Article  Google Scholar 

  37. Daud ND, Puzi SM, Rozi SKM (2019) New application of pomegranate peel waste: the decontamination of toxic Methylene blue dye from textile wastewater. J Eng Res Educ 11:45–58

    Google Scholar 

  38. Msaadi R, Sassi W, Hihn JY, Ammar S, Chehimi MM (2021) Valorization of pomegranate peel balls as bioadsorbents of methylene blue in aqueous media. Emergent Mater 1–10. https://doi.org/10.1007/s42247-021-00174-w

  39. Aljeboree AM, Lafta HA, Abdulkadhm MM, Hamad BA, Dheyaa NB, Al-Dhalimy AMB, Alkaim AF, Abed SA (2022) Environmental removal of brilliant yellow dye onto porous adsorbent derived from pomegranate peels waste. In IOP Conf Ser: Earth Environ Sci 1029(1):012007. https://doi.org/10.1088/1755-1315/1029/1/012007

    Article  Google Scholar 

  40. Ghibate R, Senhaji O, Taouil R (2021) Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Stud Chem Environ Eng 3:100078. https://doi.org/10.1016/j.cscee.2020.100078

    Article  Google Scholar 

  41. Saigl ZM, Ahmed AM (2020) Separation of Rhodamine b dye from aqueous media using natural pomegranate peels. Indones J Chem 21(1):212–224. https://doi.org/10.22146/ijc.58592

    Article  Google Scholar 

  42. Hasan HMI, Alfutisi HMM (2020) Removing of Thymol Blue from aqueous solutions by pomegranate peel. EPH-Int J Appl Sci 6(3):1–5. https://doi.org/10.53555/eijas.v6i3.91

    Article  Google Scholar 

  43. Mekhamer W, Al-Tamimi S (2019) Removal of ciprofloxacin from simulated wastewater by pomegranate peels. Environ Sci Pollut Res 26:2297–2304. https://doi.org/10.1007/s11356-018-3639-x

    Article  Google Scholar 

  44. Rashtbari Y, Hazrati S, Afshin S, Fazlzadeh M, Vosoughi M (2018) Data on cephalexin removal using powdered activated carbon (PPAC) derived from pomegranate peel. Data Brief 20:1434–1439. https://doi.org/10.1016/j.dib.2018.08.204

    Article  Google Scholar 

  45. Salmani MH, Abedi M, Mozaffari SA, Sadeghian HA (2017) Modification of pomegranate waste with iron ions a green composite for removal of Pb from aqueous solution: equilibrium, thermodynamic and kinetic studies. AMB Express 7(1):1–8. https://doi.org/10.1186/s13568-017-0520-0

    Article  Google Scholar 

  46. Khawaja M, Mubarak S, Zia-Ur-Rehman M, Kazi AA, Hamid A (2015) Adsorption studies of pomegranate peel activated charcoal for nickel (II) ion. J Chil Chem Soc 60(4):2642–2645. https://doi.org/10.4067/S0717-97072015000400003

    Article  Google Scholar 

  47. Akram M, Xu X, Gao B, Wang S, Khan R, Yue Q, Duan P, Dan H, Pan J (2021) Highly efficient removal of phosphate from aqueous media by pomegranate peel co-doping with ferric chloride and lanthanum hydroxide nanoparticles. J Clean Prod 292:125311. https://doi.org/10.1016/j.jclepro.2020.125311

    Article  Google Scholar 

  48. Gündüz F, Bayrak B (2017) Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J Mol Liq 243:790–798. https://doi.org/10.1016/j.molliq.2017.08.095

    Article  Google Scholar 

  49. Mondal NK, Basu S, Sen K, Debnath P (2019) Potentiality of mosambi (Citrus limetta) peel dust toward removal of Cr (VI) from aqueous solution: an optimization study. Appl Water Sci 9:1–13. https://doi.org/10.1007/s13201-019-0997-6

    Article  Google Scholar 

  50. Adhikari DL, Aryal RL, Bhattarai S, Gautam SK, Poudel BR (2017) Removal of chromium (VI) from aqueous solution using chemically-modified sweet lime (Citrus limetta) Peels as Adsorbent. J Nepal Chem Soc 36:82–95

    Article  Google Scholar 

  51. Rosales E, Escudero S, Pazos M, Sanromán MA (2019) Sustainable removal of Cr (VI) by lime peel and pineapple core wastes. Appl Sci 9(10):1967. https://doi.org/10.3390/app9101967

    Article  Google Scholar 

  52. Praipipat P, Ngamsurach P, Saekrathok C, Phomtai S (2022) Chicken and duck eggshell beads modified with iron (III) oxide-hydroxide and zinc oxide for reactive blue 4 dye removal. Arab J Chem 15(11):104291. https://doi.org/10.1016/j.arabjc.2022.104291

    Article  Google Scholar 

  53. Dagnew T, Bantie Z (2023) Process optimization of Cr (VI) removal from aqueous solution using activated orange peel for treatment of tannery wastewater. Ethiopian Journal of Science and Technology 16(1):51–75. https://doi.org/10.4314/ejst.v16i1.4

    Article  Google Scholar 

  54. Latif S, Rehman R, Imran M, Hira U, Iqbal S, Akram M, ... Al-thagafi ZT (2022) Use of Green chemistry for amputation of chromium ions from wastewater by alkali-treated composts of fruit peels in economical way. J Chem https://doi.org/10.1155/2022/9924164

  55. Karki S, Aryal RL, Bhattarai S, Gautam SK, Poudel BR (2017) Adsorptive Removal of arsenic (III) from aqueous solution using chemically-modified sweet lime (Citrus limetta) peels. J Nepal Chem Soc 37:11–19

    Article  Google Scholar 

  56. Verma L, Siddique MA, Singh J, Bharagava RN (2019) As (III) and As (V) removal by using iron impregnated biosorbents derived from waste biomass of Citrus limetta (peel and pulp) from the aqueous solution and ground water. J Environ Manage 250:109452. https://doi.org/10.1016/j.jenvman.2019.109452

    Article  Google Scholar 

  57. Bhatti HN, Zaman Q, Kausar A, Noreen S, Iqbal M (2016) Efficient remediation of Zr (IV) using citrus peel waste biomass: kinetic, equilibrium and thermodynamic studies. Ecol Eng 95:216–228. https://doi.org/10.1016/j.ecoleng.2016.06.087

    Article  Google Scholar 

  58. Ibrahim M, Siddique A, Verma L, Singh J, Koduru JR (2019) Adsorptive removal of fluoride from aqueous solution by biogenic iron permeated activated carbon derived from sweet lime waste. Acta Chim Slov 66(1):123–136

    Article  Google Scholar 

  59. Pavithra S, Thandapani G, Sugashini S, Sudha PN, Alkhamis HH, Alrefaei AF, Almutairi MH (2021) Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere 271:129415. https://doi.org/10.1016/j.chemosphere.2020.129415

    Article  Google Scholar 

  60. Panadare DC, Lade VG, Rathod VK (2014) Adsorptive removal of copper (II) from aqueous solution onto the waste sweet lime peels (SLP): equilibrium, kinetics and thermodynamics studies. Desalin Water Treat 52(40–42):7822–7837. https://doi.org/10.1080/19443994.2013.831789

    Article  Google Scholar 

  61. Singh S, Shukla SR (2017) Theoretical studies on adsorption of Ni (II) from aqueous solution using Citrus limetta peels. Environ Prog Sustainable Energy 36(3):864–872. https://doi.org/10.1002/ep.12526

    Article  Google Scholar 

  62. Herrera-Barros A, Bitar-Castro N, Villabona-Ortíz Á, Tejada-Tovar C, González-Delgado ÁD (2020) Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustainable Chemistry and Pharmacy 17:100299. https://doi.org/10.1016/j.scp.2020.100299

    Article  Google Scholar 

  63. Yan C, Cheng Z, Tian Y, Qiu F, Chang H, Li S, ... Quan X (2021) Adsorption of Ni (II) on detoxified chromite ore processing residue using citrus peel as reductive mediator: adsorbent preparation, kinetics, isotherm, and thermodynamics analysis. J Clean Prod 315, 128209. https://doi.org/10.1016/j.jclepro.2021.128209

  64. Villen-Guzman M, Gutierrez-Pinilla D, Gomez-Lahoz C, Vereda-Alonso C, Rodriguez-Maroto JM, Arhoun B (2019) Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ Res 179:108849. https://doi.org/10.1016/j.envres.2019.108849

    Article  Google Scholar 

  65. Tejada-Tovar C, Villabona-Ortíz Á, Sierra-Ardila C, Meza-Acuña M, Ortega-Toro R (2021) Adsorption in a binary system of Pb (II) and Ni (II) using lemon peels. Rev Fac Ing Univ Antioquia 101:31–44. https://doi.org/10.17533/udea.redin.20200691

    Article  Google Scholar 

  66. Poonam and Kumar N (2020) Experimental and kinetic study of removal of lead (Pb+ 2) from battery effluent using sweet lemon (Citrus limetta) peel biochar adsorbent. Environ Dev Sustain 22(5): 4379-4406. https://doi.org/10.1007/s10668-019-00389-2

  67. Meseldzija S, Petrović J, Onjia AE, Volkov-Husović T, Nešić A, Vukelić N (2020) Removal of Fe2+, Zn2+ and Mn2+ from the mining wastewater by lemon peel waste. J Serb Chem Soc 85(10):1371–1382. https://doi.org/10.2298/JSC200413030M

    Article  Google Scholar 

  68. Alalwan HA, Kadhom MA, Alminshid AH (2020) Removal of heavy metals from wastewater using agricultural byproducts. J Water Supply: Res TechnolAQUA 69(2):99–112. https://doi.org/10.2166/aqua.2020.133

    Article  Google Scholar 

  69. Dev S, Khamkhash A, Ghosh T, Aggarwal S (2020) Adsorptive removal of Se (IV) by citrus peels: effect of adsorbent entrapment in calcium alginate beads. ACS Omega 5(28):17215–17222. https://doi.org/10.1021/acsomega.0c01347

    Article  Google Scholar 

  70. Vidhya L, Dhandapani M, Shanthi K, (2017) Sequestering divalent nickel ions from aqueous solution using activated carbon of Citrus limetta peel: isothermic and kinetic studies. Pol J Environ Stud 26(4). https://doi.org/10.15244/pjoes/69092

  71. Muhaisen LF (2016) Lemon peel as natural biosorbent to remove phosphate from simulated wastewater. J Eng Sustain Dev 20(2):163–173

    Google Scholar 

  72. Villen-Guzman M, Cerrillo-Gonzalez MDM, Paz-Garcia JM, Rodriguez-Maroto JM, Arhoun B (2021) Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents. Environ Technol Innov 21:101380. https://doi.org/10.1016/j.eti.2021.101380

    Article  Google Scholar 

  73. Topare NS, Surange S, Chaudhari A, Raut-Jadhav S, Khedkar SV, Bokil SA (2020) Adsorption of rhodamine-B by using citrus peel powder: influence of operating parameters. J Indian Chem Soc 97(11a):2188–2194

    Google Scholar 

  74. Li W, Yang X, Doshmanziari M, Esmaeili H (2022) Elimination of methyl violet 2B dye from water using Citrus limetta leaves-activated carbon modified by copper-ferrite nanoparticles. Sep Sci Technol 57(4):509–522. https://doi.org/10.1080/01496395.2021.1919143

    Article  Google Scholar 

  75. Yadav SK, Dhakate SR, Singh BP (2022) Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Biores Technol 344:126231. https://doi.org/10.1016/j.biortech.2021.126231

    Article  Google Scholar 

  76. Munagapati VS, Wen JC, Pan CL, Gutha Y, Wen JH (2019) Enhanced adsorption performance of Reactive Red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder. J Mol Liq 285:375–385. https://doi.org/10.1016/j.molliq.2019.04.081

    Article  Google Scholar 

  77. Wang L, Shi C, Pan L, Zhang X, Zou JJ (2020) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12(8):4790–4815. https://doi.org/10.1039/C9NR09274A

    Article  Google Scholar 

  78. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  Google Scholar 

  79. Bayuo J, Rwiza M, Mtei K (2022) A comprehensive review on the decontamination of lead (II) from water and wastewater by low-cost biosorbents. RSC Advances 12(18):11233–11254

    Article  Google Scholar 

Download references

Acknowledgements

The authors AK and DBP acknowledge HBTU Kanpur for providing all necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

DBP has prepared the first draft of the manuscript. AK contributed in illustrations. AK, RKA, and SKY edited the manuscript and finalized it.

Corresponding author

Correspondence to Dan Bahadur Pal.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, A., Yadav, S., Arya, R.K. et al. Punica granatum and Citrus limetta biowaste-derived sorbents for the removal of heavy metals and organic compounds: sustainability perspectives. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05726-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05726-8

Keywords

Navigation