Skip to main content
Log in

Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficiency of low-cost, abundantly available local forestry waste, oak (Quercus robur) acorn peel (OP), to remove toxic Cr(VI) from aqueous solutions was studied in a batch system as a function of contact time, adsorbate concentration, adsorbent dosage, and pH. In an equilibrium time of 420 min, the maximum Cr removal by OP at pH 2 and 10 was 100 and 97 %, respectively. The sorption data fitted well with Langmuir adsorption model. Evaluation using Langmuir expression presented a monolayer sorption capacity of 47.39 mg g−1 with an equilibrium sorbent dose of 5 g L−1 and pH 7. Uptake of Cr by OP was described by pseudo-second-order chemisorption model. ICP-OES, LC-ICPMS analysis of the aqueous and solid phases revealed that the mechanism of Cr(VI) removal is by ‘integrated adsorption and reduction’ mechanism. ESEM-EDX and XRD analysis of OP before and after adsorption also confirmed that both adsorption and reduction of Cr(VI) to less toxic Cr3+ forms followed by complexation onto the adsorbent surface contributed to the removal of Cr(VI). Consistent with batch studies, OP effectively removed (>95 %) Cr from the real water samples collected from lake and sea. The results of this study illustrate that OP could be an economical, green, and effective biomaterial for Cr(VI) removal from natural aquatic ecosystems and industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acar, F., & Malkoc, E. (2004). The removal of chromium (VI) from aqueous solutions by Fagus orientalis L. Bioresource Technology, 94, 13–15.

    Article  CAS  Google Scholar 

  • Akmar Zakaria, Z., Suratman, M., Mohammed, N., & Azlina Ahmad, W. (2009). Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust. Desalination, 244, 109–121.

    Article  Google Scholar 

  • Anandkumar, J., & Mandal, B. (2009). Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. Journal of Hazardous Materials, 168, 633–640.

    Article  CAS  Google Scholar 

  • Babu, B., & Gupta, S. (2008). Adsorption of Cr (VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.

    Article  CAS  Google Scholar 

  • Bhatti, H. N., Nasir, A. W., & Hanif, M. A. (2010). Efficacy of Daucus carota L. waste biomass for the removal of chromium from aqueous solutions. Desalination, 253, 78–87.

    Article  CAS  Google Scholar 

  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  • Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6, 533–540.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Aber, S. (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. Journal of Hazardous Materials, 94, 49–61.

    Article  CAS  Google Scholar 

  • Deng, S., & Ting, Y. P. (2005). Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environmental Science and Technology, 39, 8490–8496.

    Article  CAS  Google Scholar 

  • Dittert, I. M., de Lima Brandão, H., Pina, F., da Silva, E. A., de Souza, S., Ma, G. U., de Souza, A. A. U., Botelho, C., Boaventura, R. A., & Vilar, V. J. (2014). Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chemical Engineering Journal, 237, 443–454.

    Article  CAS  Google Scholar 

  • Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145, 465–470.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J., Tiemann, K., Armendariz, V., Bess-Oberto, L., Chianelli, R., Rios, J., Parsons, J., & Gamez, G. (2000). Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass. Journal of Hazardous Materials, 80, 175–188.

    Article  CAS  Google Scholar 

  • Khomdram, S. D., & Singh, P. K. (2011). Polyphenolic compounds and free radical scavenging activity in eight Lamiaceae herbs of Manipur. Notulae Scientia Biologicae, 3, 108–113.

    CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2015). Bioremediation potential of natural polyphenol rich green wastes: a review of current research and recommendations for future directions. Environmental Technology and Innovation, 4, 17–28.

    Article  Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016a). In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Reviews of Environmental Contamination and Toxicology, 236, 1–115.

    Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016b). Ex-situ remediation technologies for environmental pollutants: a critical perspective. Reviews of Environmental Contamination and Toxicology, 236, 117–192.

    Google Scholar 

  • Luo, P., Zhang, J. S., Zhang, B., Wang, J. H., Zhao, Y. F., & Liu, J. D. (2011). Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal. Industrial and Engineering Chemistry Research, 50, 10246–10252.

    Article  CAS  Google Scholar 

  • Malkoc, E., & Nuhoglu, Y. (2007). Potential of tea factory waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies. Separation and Purification Technology, 54, 291–298.

    Article  CAS  Google Scholar 

  • Malkoc, E., Nuhoglu, Y., & Dundar, M. (2006). Adsorption of chromium (VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials, 138, 142–151.

    Article  CAS  Google Scholar 

  • Mallampati, R., & Valiyaveettil, S. (2012). Application of tomato peel as an efficient adsorbent for water purification—alternative biotechnology? RSC Advances, 2, 9914–9920.

    Article  CAS  Google Scholar 

  • Moulton, M. C., Braydich-Stolle, L. K., Nadagouda, M. N., Kunzelman, S., Hussain, S. M., & Varma, R. S. (2010). Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale, 2, 763–770.

    Article  CAS  Google Scholar 

  • Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., José Núñez, M. A., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.

    Article  CAS  Google Scholar 

  • Oyaizu, M. (1986). Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine. Japenese Journal of Nutrition, 44, 307–315.

    Article  CAS  Google Scholar 

  • Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 70, 298–305.

    Article  CAS  Google Scholar 

  • Rao, R. A., & Rehman, F. (2010). Adsorption studies on fruits of Gular (Ficus glomerata): removal of Cr(VI) from synthetic wastewater. Journal of Hazardous Materials, 181, 405–412.

    Article  CAS  Google Scholar 

  • Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254, 2959–2972.

    Article  CAS  Google Scholar 

  • Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64, 1782–1806.

    Article  CAS  Google Scholar 

  • Sarin, V., & Pant, K. K. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource Technology, 97, 15–20.

    Article  CAS  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G. S., Rajarathnam, D., & Naidu, R. (2010). Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. Journal of Hazardous Materials, 183, 87–97.

    Article  CAS  Google Scholar 

  • Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. Journal of Nutrition, 130, 2073S–2085S.

    CAS  Google Scholar 

  • Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Sreenivas, K., Inarkar, M., Gokhale, S., & Lele, S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: equilibrium and column studies. Journal of Environmental Chemical Engineering, 2, 455–462.

    Article  CAS  Google Scholar 

  • Vaghetti, J. C., Lima, E. C., Royer, B., Brasil, J. L., da Cunha, B. M., Simon, N. M., Cardoso, N. F., & Noreña, C. P. Z. (2008). Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr (VI) from aqueous solution—kinetics and equilibrium study. Biochemical Engineering Journal, 42, 67–76.

    Article  CAS  Google Scholar 

  • Venkateswarlu, P., Ratnam, M. V., Rao, D. S., & Rao, M. V. (2007). Removal of chromium from an aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. International Journal of Physical Sciences, 2, 188–195.

    Google Scholar 

  • Zhang, Y., Wang, Y., & Matyjaszewski, K. (2011). ATRP of methyl acrylate with metallic zinc, magnesium, and iron as reducing agents and supplemental activators. Macromolecules, 44, 683–685.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SK thanks the Australian Government, University of South Australia (UniSA), and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) for the International Postgraduate Research Scholarship (IPRS) and CRC CARE top-up fellowship during PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saranya Kuppusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuppusamy, S., Thavamani, P., Megharaj, M. et al. Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents. Water Air Soil Pollut 227, 62 (2016). https://doi.org/10.1007/s11270-016-2760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2760-z

Keywords

Navigation