Skip to main content
Log in

Flower extract of Tagetes erecta (marigold) as capping agents for synthesis of magnesium oxide nanoparticles with antioxidant potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nanoparticles play a major role in the field of biomedical science, agriculture, engineering, and environment. Plant-based nanoparticles provide biocompatibility, antimicrobial activity, and antioxidant properties. Flowers of Tagetes erecta (marigold flower) have medicinal properties. The novelty of the present study is the synthesis of magnesium oxide nanoparticles (MgO NPs) using the flower extract of Tagetes erecta (marigold flower). The obtained T. erecta–mediated MgO NPs (M-MgO NPs) were examined by UV–Vis spectroscopy, FTIR, XRD, FESEM, EDAX, and TGA. The absorbance spectra of UV–Vis analysis shows the peak at 280 nm which indicates the presence of M-MgO NPs. FTIR spectral analysis confirmed the presence of functional groups such as O–H stretch, C-H stretch, C–O–C bond, and Mg-O-Mg bond. XRD analysis determined the crystalline phase–mediated face-centered cubic M-MgO NPs. Field emission scanning electron microscopic analysis confirmed the spherical shape of M-MgO NPs. The occurrence of Mg, O, and C was identified by EDX analysis. The persistence of thermal stability and mass reduction was observed by TGA. The 67% free radical scavenging activity was observed in M-MgO NPs and proves that M-MgO NPs possess the antioxidant activity. Through the process of green synthesis, M-MgO NPs have biocompatible property and it can be utilized in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomedicine Biotechnol 45(7):1272–1291. https://doi.org/10.1080/21691401.2016.1241792

    Article  Google Scholar 

  2. Jouyandeh M, Tavakoli O, Sarkhanpour R, Sajadi SM, Zarrintaj P, Rabiee N, Akhavan O, Lima EC, Saeb MR (2022) Green products from herbal medicine wastes by subcritical water treatment. J Hazard Mater 424:127294. https://doi.org/10.1016/j.jhazmat.2021.127294

    Article  Google Scholar 

  3. Yaqub A, Ajab H, Almas A, Syed SM, Azam A, Khan MI, Awais M, Muhammad I, Galal AM, Alshahrani MY (2022) Utilization of nano-biosorbents based on pine needles and banana peel for methylene blue removal: equilibrium, kinetics, thermodynamic study, and application. Biomass Convers Biorefinery 12(5):1787–1802. https://doi.org/10.1007/s13399-021-02191-5

    Article  Google Scholar 

  4. Thejas R, Naveen CS, Khan MI, Prasanna GD, Reddy S, Oreijah M, Guedri K, Bafakeeh OT, Jameel M (2022) A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers Biorefinery 1–11. https://doi.org/10.1007/s13399-022-03258-7

  5. Nguyen NTT, Nguyen LM, Nguyen TTT, Tran UP, Nguyen DTC, Van Tran T (2023) A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. Chemosphere 312:137301. https://doi.org/10.1016/j.chemosphere.2022.137301

    Article  Google Scholar 

  6. Abinaya S, Kavitha HP, Prakash M, Muthukrishnaraj AJSC (2021) Green synthesis of magnesium oxide nanoparticles and its applications: a review. Sustain Chem Pharm 19:100368. https://doi.org/10.1016/j.scp.2020.100368

    Article  Google Scholar 

  7. Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1(2):123–128. https://doi.org/10.1016/j.coche.2011.12.002

    Article  Google Scholar 

  8. Vithiya K, Sen S (2011) Biosynthesis of nanoparticles. Int J Pharm Sci Res 2(11):2781. https://doi.org/10.13040/IJPSR.0975-8232.2(11).2781-85

    Article  Google Scholar 

  9. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16. https://doi.org/10.1155/2011/270974

    Article  Google Scholar 

  10. Pal G, Rai P, Pandey A (2019) Green synthesis of nanoparticles: a greener approach for a cleaner future. In Green Synth Charact Appl Nanoparticles 1–26. Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00001-0

  11. Mathur P, Jha S, Ramteke S, Jain NK (2018) Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomedicine Biotechnol 46(sup1):115–126. https://doi.org/10.1080/21691401.2017.1414825

    Article  Google Scholar 

  12. Vadlapudi V, Kaladhar DSVGK (2014) Green synthesis of silver and gold nanoparticles. Middle East J Sci Res 19(6):834–842. https://doi.org/10.5829/idosi.mejsr.2014.19.6.11585

    Article  Google Scholar 

  13. Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873. https://doi.org/10.1007/s11274-015-1840-3

    Article  Google Scholar 

  14. Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B: Biointerfaces 92:209–212. https://doi.org/10.1016/j.colsurfb.2011.11.044

    Article  Google Scholar 

  15. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11):209. https://doi.org/10.3390/nano6110209

    Article  Google Scholar 

  16. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9:105–116. https://doi.org/10.1007/s12668-018-0566-8

    Article  Google Scholar 

  17. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotech Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  Google Scholar 

  18. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A: Physicochem Eng Asp 369(1–3):27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020

    Article  Google Scholar 

  19. RamezaniFarani M, Farsadrooh M, Zare I, Gholami A, Akhavan O (2023) Green synthesis of magnesium oxide nanoparticles and nanocomposites for photocatalytic antimicrobial, antibiofilm and antifungal applications. Catalysts 13(4):642. https://doi.org/10.3390/catal13040642

    Article  Google Scholar 

  20. Younis IY, El-Hawary SS, Eldahshan OA, Abdel-Aziz MM, Ali ZY (2021) Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci Rep 11(1):16868. https://doi.org/10.1038/s41598-021-96377-6

    Article  Google Scholar 

  21. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B: Biol 190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014

    Article  Google Scholar 

  22. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17(1):7. https://doi.org/10.3201/eid1701.P11101

    Article  Google Scholar 

  23. Hornak J (2021) Synthesis, properties, and selected technical applications of magnesium oxide nanoparticles: a review. Int J Mol Sci 22(23):12752. https://doi.org/10.3390/ijms222312752

    Article  Google Scholar 

  24. Rizwanul Fattah IM, Ong HC, Mahlia TMI, Mofijur M, Silitonga AS, Rahman SM, Ahmad A (2020) State of the art of catalysts for biodiesel production. Front Energy Res 101. https://doi.org/10.3389/fenrg.2020.00101

  25. Youssef HA, Ali SM, Sanad MI, Dawood DH (2020) Chemical investigation of flavonoid, phenolic acids composition and antioxidant activity of Tagetes erecta flowers. Egypt J Chem 63(7):2605–2615. https://doi.org/10.21608/EJCHEM.2019.19839.2197

    Article  Google Scholar 

  26. Martinez-Boubeta C, Balcells L, Cristòfol R, Sanfeliu C, Rodríguez E, Weissleder R, Lope-Piedrafita S, Simeonidis K, Angelakeris M, Sandiumenge F, Calleja A (2010) Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine: Nanotechnol Biol Med 6(2):362–370. https://doi.org/10.1016/j.nano.2009.09.003

    Article  Google Scholar 

  27. Sharma G, Soni R, Jasuja ND (2017) Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci 11(3):471–477. https://doi.org/10.1016/j.jtusci.2016.09.004

    Article  Google Scholar 

  28. Perera H (2016) Antidiabetic effects of Pterocarpus marsupium (Gammalu). Eur J Med Plants 13(4):1–14. https://doi.org/10.9734/EJMP/2016/23930

    Article  MathSciNet  Google Scholar 

  29. Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F (2018) Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 212:45–50. https://doi.org/10.1016/j.matlet.2017.10.068

    Article  Google Scholar 

  30. Rodda R, Avvari SK, Chidrawar RV, Reddy TR (2013) Pharmacological screening of synergistic antidiabetic efficacy of Tagetes erecta and Foeniculum vulgare. Int J Phytopharmacol 4:223–229

    Google Scholar 

  31. Sing Y, Gupta A, Kannojia P (2020) Tagetes erecta (marigold)-a review on its phytochemical and medicinal properties. Curr Med Drugs Res 4(1):1–6. https://doi.org/10.53517/CMDR.2581-5008.412020201

    Article  Google Scholar 

  32. Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741. https://doi.org/10.1016/j.arabjc.2014.11.015

    Article  Google Scholar 

  33. Mondal NK Hajra A (2016) Synthesis of copper nanoparticles (CuNPs) from petal extracts of marigold (Tagetes sp.) and sunflower (Helianthus sp.) and their effective use as a control tool against mosquito vectors. J Mosq Res 6. https://doi.org/10.5376/jmr.2016.06.0019

  34. Lima JE, Moreira NC, Sakamoto-Hojo ET (2022) Mechanisms underlying the pathophysiology of type 2 diabetes: from risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat Res/Genet Toxicol Environ Mutagen 874:503437. https://doi.org/10.1016/j.mrgentox.2021.503437

    Article  Google Scholar 

  35. Gul H, Javed HMA, Awais M, Javaid MY, Khan MI, Arif M, Alshahrani MY, Khalil RMA, Khan FS, Galal AM (2023) TiO2 nanoparticles functionalized with marigold for antioxidant role to enhance the skin protection. Biomass Convers Biorefinery 13(17):16025–16035. https://doi.org/10.1007/s13399-022-02433-0

    Article  Google Scholar 

  36. Rafiq A, Tehseen S, Khan TA, Awais M, Sodhozai AR, Javed CH, Ullah MF, Ali N, Alshahrani MY, Khan MI, Galal AM (2023) Biosynthesis of silver nanoparticles from novel Bischofia javanica plant loaded chitosan hydrogel: as antimicrobial and wound healing agent. Biomass Convers Biorefinery 13(17):15531–15541. https://doi.org/10.1007/s13399-022-02960-w

    Article  Google Scholar 

  37. Gul H, Irum S, Ahmed W, Awais M, Khan MI (2023) Iron oxide nanoparticle biosynthesis and potential application for hepatic cellular damages through antioxidant stress. Biomass Convers Biorefinery1–10. https://doi.org/10.1007/s13399-023-04440-1

  38. Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI, Tahir MB, Kabli MR (2020) Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci 10:2351–2364. https://doi.org/10.1007/s13204-020-01414-x

    Article  Google Scholar 

  39. Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG (2019) Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. 48(08):1210–1215. https://nopr.niscpr.res.in/handle/123456789/49711

  40. Vergheese M, Vishal SK (2018) Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem 7(3):1193–1200. https://www.phytojournal.com/archives/2018/vol7issue3/PartQ/7-3-37-276.pdf

  41. Fardood ST, Ramazani A, Joo SW (2018) Eco-friendly synthesis of magnesium oxide nanoparticles using arabic Gum. J Appl Chem Res 12(1):8–15. https://journals.iau.ir/article_536684_f173fdf64b46d4f6ef6c4f729e72681c.pdf

  42. Umaralikhan L, Jamal Mohamed Jaffar M (2018) Green synthesis of MgO nanoparticles and it antibacterial activity. Iran J Sci Technol Trans A: Sci 42:477–485. https://doi.org/10.1007/s40995-016-0041-8

    Article  Google Scholar 

  43. Moorthy SK, Ashok CH, Rao KV, Viswanathan C (2015) Synthesis and characterization of MgO nanoparticles by Neem leaves through green method. Mater Today: Proc 2(9):4360–4368. https://doi.org/10.1016/j.matpr.2015.10.027

    Article  Google Scholar 

  44. Hassan SED, Fouda A, Saied E, Farag MM, Eid AM, Barghoth MG, Awad MA, Hamza MF, Awad MF (2021) Rhizopus oryzae-mediated green synthesis of magnesium oxide nanoparticles (MgO-NPs): a promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. J Fungi 7(5):372. https://doi.org/10.3390/jof7050372

    Article  Google Scholar 

  45. Periakaruppan R, Naveen V, Danaraj J (2022) Green synthesis of magnesium oxide nanoparticles with antioxidant potential using the leaf extract of Piper nigrum. JOM 74(12):4817–4822. https://link.springer.com/article/10.1007/s11837-022-05548-x

  46. Periakaruppan R, Ariuthayan B, Vanathi P, Selvaraj KSV, Al-Dayan N, Dhanasekaran S, Parthiban A (2023) Fabrication of Allium cepa–assisted magnesium oxide nanoparticles with antibacterial and antioxidant properties. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-023-04828-z

  47. Periakaruppan R, Vanathi P, Selvaraj KSV (2023) Phyto-synthesis, characterization of magnesium oxide nanoparticles using aqueous extract of Piper betle leaf and an assessment of its antioxidant potential. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-023-05116-6

  48. Ali S, Sudha KG, Thirumalaivasan N, Ahamed M, Pandiaraj S, Rajeswari VD, Vinayagam Y, Thiruvengadam M, Govindasamy R (2023) Green synthesis of magnesium oxide nanoparticles by using Abrus precatorius bark extract and their photocatalytic, antioxidant, antibacterial, and cytotoxicity activities. Bioengineering 10(3):302. https://doi.org/10.3390/bioengineering10030302

    Article  Google Scholar 

  49. Narendhran S, Manikandan M, Shakila PB (2019) Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull Mater Sci 42:1–8. https://doi.org/10.1007/s12034-019-1811-7

    Article  Google Scholar 

  50. Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O (2017) Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 5(48):9452–9476. https://doi.org/10.1039/C7TB01689A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ms. Nithya C: investigation, original draft, and project.

Dr. Rajiv Periakaruppan: conceptualization, supervision, and administration.

Dr. Karungan Selvaraj Vijai Selvaraj: data curation.

Dr. K.V. Shalini: data curation.

Dr. Noura Al-Dayan: data curation.

Corresponding author

Correspondence to Rajiv Periakaruppan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, N., Periakaruppan, R., Selvaraj, K.S.V. et al. Flower extract of Tagetes erecta (marigold) as capping agents for synthesis of magnesium oxide nanoparticles with antioxidant potential. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05668-1

Keywords

Navigation