Skip to main content
Log in

Towards sustainable food packaging films using cellulose acetate and polyvinylidene fluoride matrix enriched with mango peel extract

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Foodborne diseases remain a critical global concern, necessitating innovative approaches to curb the microbial contamination and ensure food safety. This study investigates the potential of mango peel extract (MPs) as a natural antimicrobial agent to enhance the performance of edible films designed for food packaging. Films composed of cellulose acetate (CA), polyvinylidene fluoride (PVDF), and a composite of CA/PVDF (CAPVDF) were evaluated for their antibacterial properties against a range of pathogenic bacteria. CA, PVDF, and CAPVDF films displayed limited inhibitory effects on the tested pathogens. Incorporating MPs into CAPVDF matrix significantly improved antibacterial activity. The MPs-containing CAPVDF film exhibited substantial zones of inhibition (ZOI) against Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger, with zone of inhibition (ZOI) widths ranging from 20 to 24 mm. The contact angles of the PVDF and CA films were 117.2° and 109.2°, respectively. After mixing the two polymers, the CAPVDF film showed a contact angle 105.7°, while adding the MPs extract decreased the contact angle to be 83.2° for MPs3/CAPVDF films. Particularly, the considerable ZOI widths of 24 mm, 23 mm, 20 mm, and 18 mm, respectively, exhibited the MPs3/CAPVDF film’s impressive inhibitory impact on E. coli, S. aureus, C. albicans, and A. niger. Interestingly, the MPs3/CAPVDF film completely prevented the evolution of S. aureus and E. coli. These findings underscore the potential of mango peel extract as a natural solution to extend the shelf life and enhance the safety of packaged food products. Ultimately, incorporating MPs into CAPVDF films presents a promising strategy for combatting foodborne pathogens and preserving the freshness of packaged goods. This research contributes to global efforts to reduce food waste and improve public health through sustainable and effective food safety measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the datasets used and/or analyzed in this study are available in the manuscript, and supplementary information can be requested from the corresponding author.

Abbreviations

CA:

Cellulose acetate

HPLC:

High-performance liquid chromatography

PVDF:

Polyvinylidene fluoride

GC-MS:

Gas chromatography-mass spectrometry

MPs:

Mango peels

GIZ:

Growth inhibition zones

TBS:

Trypticase soya broth

YPD:

Yeast extract-peptone-dextrose

MIC:

Minimal inhibitory concentration

MBC:

Minimal biocidal concentration

NZ:

No zone of inhibition

WVP:

Water vapor permeability

ZOI:

Zone of inhibition

References

  1. Chawla R, Sivakumar S, Kaur H (2021) Antimicrobial edible films in food packaging: current scenario and recent nanotechnological advancements- a review. Carbohydr Polym Technol Appl 2:100024. https://doi.org/10.1016/j.carpta.2020.100024

    Article  CAS  Google Scholar 

  2. Krepker M, Shemesh R, Danin Poleg Y et al (2017) Active food packaging films with synergistic antimicrobial activity. Food Control 76:117–126. https://doi.org/10.1016/j.foodcont.2017.01.014

    Article  CAS  Google Scholar 

  3. Weinstein JE, Dekle JL, Leads RR, Hunter RA (2020) Degradation of bio-based and biodegradable plastics in a salt marsh habitat: another potential source of microplastics in coastal waters. Mar Pollut Bull 160:111518. https://doi.org/10.1016/j.marpolbul.2020.111518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moshood TD, Nawanir G, Mahmud F et al (2022) Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Curr Res Green Sustain Chem 5:100273. https://doi.org/10.1016/j.crgsc.2022.100273

    Article  CAS  Google Scholar 

  5. Ataei S, Azari P, Hassan A et al (2020) Essential oils-loaded electrospun biopolymers: a future perspective for active food packaging. Adv Polym Technol 2020:9040535. https://doi.org/10.1155/2020/9040535

    Article  CAS  Google Scholar 

  6. Ambaw A, Fadiji T, Opara UL (2021) Thermo-Mechanical analysis in the fresh fruit cold chain: a review on recent advances. Foods 10(6):1357. https://doi.org/10.3390/foods10061357

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fadiji T, Berry TM, Coetzee CJ, Opara UL (2018) Mechanical design and performance testing of corrugated paperboard packaging for the postharvest handling of horticultural produce. Biosyst Eng 171:220–244. https://doi.org/10.1016/j.biosystemseng.2018.05.004

    Article  Google Scholar 

  8. Pathare PB, Opara UL (2014) Structural design of corrugated boxes for horticultural produce: A review. Biosyst Eng 125:128–140. https://doi.org/10.1016/j.biosystemseng.2014.06.021

    Article  Google Scholar 

  9. Islamipour Z, Zare EN, Salimi F et al (2022) Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging. J Nanostructure Chem 12:991–1006. https://doi.org/10.1007/s40097-022-00491-4

    Article  CAS  Google Scholar 

  10. Das A, Ringu T, Ghosh S, Pramanik N (2023) A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull 80:7247–7312. https://doi.org/10.1007/s00289-022-04443-4

    Article  CAS  Google Scholar 

  11. Jha P (2020) Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. Int J Biol Macromol 160:571–582. https://doi.org/10.1016/j.ijbiomac.2020.05.242

    Article  CAS  PubMed  Google Scholar 

  12. Mousavi Khaneghah A, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1–19. https://doi.org/10.1016/j.fbp.2018.05.001

    Article  CAS  Google Scholar 

  13. Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician 8:2531–2538. https://doi.org/10.19082/2531

    Article  PubMed  PubMed Central  Google Scholar 

  14. Makvandi P, Iftekhar S, Pizzetti F et al (2021) Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environ Chem Lett 19:583–611. https://doi.org/10.1007/s10311-020-01089-4

    Article  CAS  Google Scholar 

  15. Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ (2019) Self-Assembled carbohydrate polymers for food applications: a review. Compr Rev Food Sci Food Saf 18:2009–2024. https://doi.org/10.1111/1541-4337.12499

    Article  CAS  PubMed  Google Scholar 

  16. Perera KY, Jaiswal AK, Jaiswal S (2023) Biopolymer-based sustainable food packaging materials: challenges, solutions, and applications. Foods 12(12):2422. https://doi.org/10.3390/foods12122422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajeswari A, Christy EJS, Swathi E, Pius A (2020) Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ Chem Ecotoxicol 2:107–114. https://doi.org/10.1016/j.enceco.2020.07.003

    Article  Google Scholar 

  18. Khalid MY, Al Rashid A, Arif ZU et al (2021) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Mater Res Technol 14:2601–2623. https://doi.org/10.1016/j.jmrt.2021.07.128

    Article  CAS  Google Scholar 

  19. Istirokhatun T, Rokhati N, Rachmawaty R et al (2015) Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environ Sci 23:274–281. https://doi.org/10.1016/j.proenv.2015.01.041

    Article  CAS  Google Scholar 

  20. Mohammadpourfazeli S, Arash S, Ansari A et al (2023) Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv 13:370–387. https://doi.org/10.1039/D2RA06774A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum Arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  CAS  PubMed  Google Scholar 

  22. Janani N, Zare EN, Salimi F, Makvandi P (2020) Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr Polym 247:116678. https://doi.org/10.1016/j.carbpol.2020.116678

    Article  CAS  PubMed  Google Scholar 

  23. Deshmukh RK, Gaikwad KK (2022) Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02623-w

    Article  Google Scholar 

  24. López-Cobo A, Verardo V, Diaz-de-Cerio E et al (2017) Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res Int 100:423–434. https://doi.org/10.1016/j.foodres.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  25. Liu F-X, Fu S-F, Bi X-F et al (2013) Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem 138:396–405. https://doi.org/10.1016/j.foodchem.2012.09.111

    Article  CAS  PubMed  Google Scholar 

  26. Alaiya MA, Odeniyi MA (2023) Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. Futur J Pharm Sci 9:29. https://doi.org/10.1186/s43094-023-00479-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Irkin R, Esmer OK (2015) Novel food packaging systems with natural antimicrobial agents. J Food Sci Technol 52:6095–6111. https://doi.org/10.1007/s13197-015-1780-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remedio LN, Silva dos Santos JW, Vieira Maciel VB et al (2019) Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocoll 87:830–838. https://doi.org/10.1016/j.foodhyd.2018.09.012

    Article  CAS  Google Scholar 

  29. Khalid MY, Arif ZU, Sheikh MF, Nasir MA (2021) Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. Int J Mater Form 14:1085–1095. https://doi.org/10.1007/s12289-021-01624-w

    Article  Google Scholar 

  30. Khalid MY, Arif ZU, Al Rashid A (2022) Investigation of tensile and flexural behavior of green composites along with their impact response at different energies. Int J Precis Eng Manuf Technol 9:1399–1410. https://doi.org/10.1007/s40684-021-00385-w

    Article  Google Scholar 

  31. Bai X, Lai T, Zhou T et al (2018) In vitro antioxidant activities of phenols and oleanolic acid from mango peel and their cytotoxic effect on A549 cell line. Molecules 23(6):1395. https://doi.org/10.3390/molecules23061395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gómez-Caravaca AM, Verardo V, Toselli M et al (2013) Determination of the Major Phenolic Compounds in Pomegranate Juices by HPLC–DAD–ESI-MS. J Agric Food Chem 61:5328–5337. https://doi.org/10.1021/jf400684n

    Article  CAS  PubMed  Google Scholar 

  33. Kanthal LK, Dey A, Satyavathi K, Bhojaraju P (2014) GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy Res 6:58–61. https://doi.org/10.4103/0974-8490.122919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abbasi AM, Guo X, Fu X et al (2015) Comparative assessment of phenolic content and in vitro antioxidant capacity in the pulp and peel of mango cultivars. Int J Mol Sci 16:13507–13527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agyare C, Koffuor GA, Boamah VE et al (2012) Antimicrobial and anti-inflammatory activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae). Evidence-Based Complement Altern Med 2012:902394. https://doi.org/10.1155/2012/902394

    Article  Google Scholar 

  36. Tsuji BT, Yang JC, Forrest A et al (2008) In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J Antimicrob Chemother 62:156–160. https://doi.org/10.1093/jac/dkn133

    Article  CAS  PubMed  Google Scholar 

  37. Gao P, Cha R, Luo H et al (2022) Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydr Polym 278:118922. https://doi.org/10.1016/j.carbpol.2021.118922

    Article  CAS  PubMed  Google Scholar 

  38. Zhao J, Wei F, Xu W, Han X (2020) Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOFs for food packaging. Appl Surf Sci 510:145418. https://doi.org/10.1016/j.apsusc.2020.145418

    Article  CAS  Google Scholar 

  39. Ajila CM, Rao LJ, Rao UJSP (2010) Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts. Food Chem Toxicol an Int J Publ Br Ind Biol Res Assoc 48:3406–3411. https://doi.org/10.1016/j.fct.2010.09.012

    Article  CAS  Google Scholar 

  40. Ajila CM, Prasada Rao UJS (2013) Mango peel dietary fibre: composition and associated bound phenolics. J Funct Foods 5:444–450. https://doi.org/10.1016/j.jff.2012.11.017

    Article  CAS  Google Scholar 

  41. Kim H, Moon JY, Kim H et al (2010) Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121:429–436. https://doi.org/10.1016/j.foodchem.2009.12.060

    Article  CAS  Google Scholar 

  42. Almeida MMB, de Sousa PHM, Arriaga ÂMC et al (2011) Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res Int 44:2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051

    Article  CAS  Google Scholar 

  43. Garcia-Mendoza MP, Paula JT, Paviani LC et al (2015) Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT - Food Sci Technol 62:131–137. https://doi.org/10.1016/j.lwt.2015.01.026

    Article  CAS  Google Scholar 

  44. Coelho EM, de Souza MEAO, Corrêa LC, et al (2019) Bioactive compounds and antioxidant activity of mango peel liqueurs (Mangifera indica L.) produced by different methods of maceration. Antioxidants 8(4):102. https://doi.org/10.3390/antiox8040102

  45. Tacias-Pascacio VG, Castañeda-Valbuena D, Fernandez-Lafuente R et al (2022) Phenolic compounds in mango fruit: a review. J Food Meas Charact 16:619–636. https://doi.org/10.1007/s11694-021-01192-2

    Article  Google Scholar 

  46. Lizárraga-Velázquez CE, Hernández C, González-Aguilar GA, Heredia JB (2018) Effect of hydrophilic and lipophilic antioxidants from mango peel (Mangifera indica L. cv. Ataulfo) on lipid peroxidation in fish oil. CyTA - J Food 16:1095–1101. https://doi.org/10.1080/19476337.2018.1513425

    Article  CAS  Google Scholar 

  47. Fadel HHM, Hassan IM, Ibraheim MT et al (2019) Effect of using cinnamon oil encapsulated in maltodextrin as exogenous flavouring on flavour quality and stability of biscuits. J Food Sci Technol 56:4565–4574. https://doi.org/10.1007/s13197-019-03931-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stuper-Szablewska K, Szablewski T, Przybylska-Balcerek A et al (2022) Antimicrobial activities evaluation and phytochemical screening of some selected plant materials used in traditional medicine. Molecules 28(1):244. https://doi.org/10.3390/molecules28010244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. John S, Lydia E, Monica SJ et al (2016) Antimicrobial efficacy of mango peel powder and formulation of recipes using mango peel powder. Int J Home Sci 2:155–161

    Google Scholar 

  50. Jabin T, Kamal S, Islam S et al (2023) Effect of gamma irradiation on chemical composition, antioxidant activity, antibacterial activity, shelf life, and cytotoxicity in the peels of two mango varieties grown in Bangladesh. Arab J Chem 16:104708. https://doi.org/10.1016/j.arabjc.2023.104708

    Article  CAS  Google Scholar 

  51. Navarro-Pérez ML, Fernández-Calderón MC, Vadillo-Rodríguez V (2022) Decomposition of growth curves into growth rate and acceleration: a novel procedure to monitor bacterial growth and the time-dependent effect of antimicrobials. Appl Environ Microbiol 88:e0184921. https://doi.org/10.1128/AEM.01849-21

    Article  PubMed  Google Scholar 

  52. Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02149-10

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32(2):149–67. https://doi.org/10.1111/j.1574-6976.2007.00094.x

    Article  CAS  PubMed  Google Scholar 

  54. Elshafie HS, Caputo L, De Martino L, et al (2021) Study of bio-pharmaceutical and antimicrobial properties of pomegranate (Punica granatum L.) leathery exocarp extract. Plants 10(1):153. https://doi.org/10.3390/plants10010153

  55. Arif ZU, Khalid MY, Sheikh MF et al (2022) Biopolymeric sustainable materials and their emerging applications. J Environ Chem Eng 10:108159. https://doi.org/10.1016/j.jece.2022.108159

    Article  CAS  Google Scholar 

  56. Khalid MY, Arif ZU (2022) Novel biopolymer-based sustainable composites for food packaging applications: a narrative review. Food Packag Shelf Life 33:100892. https://doi.org/10.1016/j.fpsl.2022.100892

    Article  CAS  Google Scholar 

  57. Wang W, Li L, Jin S et al (2020) Study on cellulose acetate butyrate/plasticizer systems by molecular dynamics simulation and experimental characterization. Polymers (Basel) 12:1272

    Article  CAS  PubMed  Google Scholar 

  58. Santos-Sauceda I, Castillo-Ortega MM, del Castillo-Castro T et al (2021) Electrospun cellulose acetate fibers for the photodecolorization of methylene blue solutions under natural sunlight. Polym Bull 78:4419–4438

    Article  CAS  Google Scholar 

  59. Feng S, Bi J, Yi J et al (2022) Modulation of ice crystal formation behavior in pectin cryogel by xyloglucan: effect on microstructural and mechanical properties. Food Res Int 159:111555. https://doi.org/10.1016/J.FOODRES.2022.111555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farouk.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, A. Towards sustainable food packaging films using cellulose acetate and polyvinylidene fluoride matrix enriched with mango peel extract. Biomass Conv. Bioref. 14, 8957–8978 (2024). https://doi.org/10.1007/s13399-023-04986-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-04986-0

Keywords

Navigation