Skip to main content
Log in

Investigation of Tensile and Flexural Behavior of Green Composites along with their Impact Response at Different Energies

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Green composites can reduce the use of synthetic fibers in many applications. The motivation behind the fabrication of green composites is their excellent biodegradability and recyclability. However, fundamental issues related to green composites are their inferior mechanical properties and the reinforcement’s hydrophilic nature. This paper presents the hand layup technique to produce green composites containing different ratios of synthetic fiber (E-glass) and natural fiber (Jute). The mechanical properties were characterized as per ASTM standards. The impact strength was also investigated for different impact energies. In addition to this, the numerical simulations using ABAQUS were performed. The experimental results for tensile and flexural results were compared and validated with finite element analysis (FEA) results. An error of nearly 4% was observed between the numerical and experimental results. The microscopic analysis of fractured tensile specimens indicated that more pull out of jute fabric in high jute weight percentage composites was the leading cause of its lower tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Siregar, J. P., et al. (2019). The effect of maleic anhydride polyethylene on mechanical properties of pineapple leaf fibre reinforced polylactic acid composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 101–112. https://doi.org/10.1007/s40684-019-00018-3

    Article  Google Scholar 

  2. Ali, H. T., et al. (2021). Fiber reinforced polymer composites in bridge industry. Structures, 30, 774–785. https://doi.org/10.1016/j.istruc.2020.12.092

    Article  Google Scholar 

  3. Khalid, M. Y., et al. (2021). Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings, 11(3), 293. https://doi.org/10.3390/coatings11030293

    Article  Google Scholar 

  4. Malinowski, R., et al. (2020). Studies on manufacturing, mechanical properties and structure of poly(butylene adipate-co-terephthalate)-based green composites modified by coconut fibers. International Journal of Precision Engineering and Manufacturing - Green Technology, 7(6), 1095–1105. https://doi.org/10.1007/S40684-019-00171-9

    Article  Google Scholar 

  5. Shah, A. U. R., Prabhakar, M. N., & Song, J.-I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites–A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262. https://doi.org/10.1007/s40684-017-0030-1

    Article  Google Scholar 

  6. Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., Arshad, H., & Zaidi, A. A. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering, 11, 100263. https://doi.org/10.1016/J.RINENG.2021.100263

    Article  Google Scholar 

  7. Kim, J.-H., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213. https://doi.org/10.1007/s40684-015-0024-9

    Article  Google Scholar 

  8. Jaafar, J., Siregar, J. P., Mohd Salleh, S., Mohd Hamdan, M. H., Cionita, T., & Rihayat, T. (2019). Important considerations in manufacturing of natural fiber composites: A review. International Journal of Precision Engineering and Manufacturing - Green Technology, 6(3), 647–664. https://doi.org/10.1007/s40684-019-00097-2

    Article  Google Scholar 

  9. Dwivedi, S. P., & Srivastava, A. K. (2019). Utilization of chrome containing leather waste in development of aluminium based green composite material. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 781–790. https://doi.org/10.1007/s40684-019-00179-1

    Article  Google Scholar 

  10. Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 143–150. https://doi.org/10.1007/s40684-018-0015-8

    Article  Google Scholar 

  11. Khalid, M. Y., Al Rashid, A., Arif, Z. U., Sheikh, M. F., Arshad, H., & Nasir, M. A. (2021). Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in Engineering, 10, 100232. https://doi.org/10.1016/j.rineng.2021.100232

    Article  Google Scholar 

  12. Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2018). Materials selection of thermoplastic matrices for ‘green’ natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 111–119. https://doi.org/10.1007/s40684-018-0012-y

    Article  Google Scholar 

  13. Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., & Arshad, H. (2021). Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. Journal of Materials Research and Technology, 14, 2601–2623. https://doi.org/10.1016/J.JMRT.2021.07.128

    Article  Google Scholar 

  14. Paglicawan, M. A., Kim, B. S., Basilia, B. A., Emolaga, C. S., Marasigan, D. D., & Maglalang, P. E. C. (2014). Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 241–246. https://doi.org/10.1007/s40684-014-0030-3

    Article  Google Scholar 

  15. Khalid, M. Y., Al Rashid, A., & Sheikh, M. F. (2021). Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach. Experimental Techniques, 45, 227–235. https://doi.org/10.1007/s40799-020-00433-1

    Article  Google Scholar 

  16. Khalid, M. Y., et al. (2021). Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process. Forces in Mechanics, 4, 100038. https://doi.org/10.1016/J.FINMEC.2021.100038

    Article  Google Scholar 

  17. Jothibasu, S., Mohanamurugan, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., & Sanjay, M. R. (2018). Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles. https://doi.org/10.1177/1528083718804207

    Article  Google Scholar 

  18. Khalid, M. Y., Al Rashid, A., Arif, Z. U., Akram, N., Arshad, H., & García Márquez, F. P. (2021). Characterization of failure strain in fiber reinforced composites: Under on-axis and off-axis loading. Crystals, 11(2), 216. https://doi.org/10.3390/cryst11020216

    Article  Google Scholar 

  19. Chandekar, H., Chaudhari, V., & Waigaonkar, S. (2020). A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26, 2079–2082. https://doi.org/10.1016/j.matpr.2020.02.449

    Article  Google Scholar 

  20. Saleem, M. H., et al. (2020). Jute: A potential candidate for phytoremediation of metals—A review. Plants, 9(2), 1–14. https://doi.org/10.3390/plants9020258

    Article  Google Scholar 

  21. Maity, S., Singha, K., Gon, D. P., Paul, P., & Singha, M. (2012). A review on jute nonwovens: Manufacturing, properties and applications. International Journal of Textile Science, 1(5), 36–43. https://doi.org/10.5923/j.textile.20120105.02

    Article  Google Scholar 

  22. Rafiquzzaman, M., Islam, M., Rahman, H., Talukdar, S., & Hasan, N. (2016). Mechanical property evaluation of glass–jute fiber reinforced polymer composites. Polymers for Advanced Technologies, 27(10), 1308–1316. https://doi.org/10.1002/pat.3798

    Article  Google Scholar 

  23. Al Rashid, A., Imran, R., & Khalid, M. Y. (2020). Determination of opening stresses for railway steel under low cycle fatigue using digital image correlation. Theoretical and Applied Fracture Mechanics, 108, 102601. https://doi.org/10.1016/j.tafmec.2020.102601

    Article  Google Scholar 

  24. Rashid, A.A., Imran, R., Arif, Z. U., and Khalid, M. Y. (2021). Finite element simulation technique for evaluation of opening stresses under high plasticity. Journal of Manufacturing Science and Engineering, 143(12), 121005. https://doi.org/10.1115/1.4051328

    Article  Google Scholar 

  25. Lee, M. S., Seo, H. Y., & Kang, C. G. (2016). Comparative study on mechanical properties of CR340/CFRP composites through three point bending test by using theoretical and experimental methods. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 359–365. https://doi.org/10.1007/s40684-016-0045-z

    Article  Google Scholar 

  26. Ali, A., et al. (2019). Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. Journal of Mechanical Science and Technology, 33(9), 4217–4226. https://doi.org/10.1007/s12206-019-0817-9

    Article  Google Scholar 

  27. Rafiquzzaman, M., Zannat, M., Roy, R., & Sultana, M. N. (2017). Jute-glass fiber based composite for engineering application. European Journal of Advances Engineering and Technology, 4(7), 510–515.

    Google Scholar 

  28. Acharya, S. K., Bera, T., Prakash, V., & Pradhan, S. (2020). Materials Today: Proceedings Effect of stacking sequence on the tribological behaviour of jute-glass hybrid epoxy composite. Materials Today: Proceedings, 28, 936–939. https://doi.org/10.1016/j.matpr.2019.12.328

    Article  Google Scholar 

  29. Bandaru, A. K., Patel, S., Sachan, Y., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2016). Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 90, 642–652. https://doi.org/10.1016/j.compositesa.2016.08.031

    Article  Google Scholar 

  30. Damanpack, A. R., Bodaghi, M., & Liao, W. H. (2020). Contact/impact modeling and analysis of 4D printed shape memory polymer beams. Smart Materials and Structures, 29(8), 85016. https://doi.org/10.1088/1361-665x/ab883a

    Article  Google Scholar 

  31. Asadi, H., Bodaghi, M., Shakeri, M., & Aghdam, M. M. (2015). Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mechanica, 226(2), 437–455. https://doi.org/10.1007/s00707-014-1191-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Isavand, S., Bodaghi, M., Shakeri, M., & Aghazadeh, M. (2015). Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings. Steel and Composite Structures, 18(1), 1–28.

    Article  Google Scholar 

  33. Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162–168. https://doi.org/10.5923/c.materials.201502.32

    Article  Google Scholar 

  34. Nirbhay, M., Dixit, A., Misra, R. K., & Mali, H. S. (2014). Tensile test simulation of CFRP test specimen using finite elements. Procedia Materials Science, 5, 267–273. https://doi.org/10.1016/j.mspro.2014.07.266

    Article  Google Scholar 

  35. Abhishek, A. P., Gowda, B. S. K., Prasad, G. L. E., & Velmurugan, R. (2017). Probabilistic study of tensile and flexure properties of untreated jute fiber reinforced polyester composite. Materials Today: Proceedings, 4(10), 11050–11055. https://doi.org/10.1016/j.matpr.2017.08.066

    Article  Google Scholar 

  36. Braga, R. A., & Magalhaes, P. A. A. (2015). Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Materials Science and Engineering C, 56, 269–273. https://doi.org/10.1016/j.msec.2015.06.031

    Article  Google Scholar 

  37. Rana, R. S., Kumre, A., Rana, S., & Purohit, R. (2017). Characterization of properties of epoxy sisal/glass fiber reinforced hybrid composite. Materials Today: Proceedings, 4(4), 5445–5451. https://doi.org/10.1016/j.matpr.2017.05.056

    Article  Google Scholar 

  38. Santulli, C., et al. (2013). Mechanical behaviour of jute cloth/wool felts hybrid laminates. Materials and Design, 50, 309–321. https://doi.org/10.1016/j.matdes.2013.02.079

    Article  Google Scholar 

  39. Khalid, M. Y., Al Rashid, A., Abbas, Z., Akram, N., Arif, Z. U., & Márquez, F. P. G. (2021). Evaluation of tensile properties of glass/sisal and glass/jute fibers reinforced hybrid composites at different stacking sequences TT—stacking sequences에 따른 Glass/Sisal과 Glass/Jute Fiber로 강화된 복합체의 연신 특성 평가. Polymer (Korea), 45(3), 390–397. https://doi.org/10.7317/pk.2021.45.3.390

    Article  Google Scholar 

  40. Khalid, M. Y., Arif, Z. U., Sheikh, M. F. et al. (2021). Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. International Journal of Material Forming, 14, 1085–1095. https://doi.org/10.1007/s12289-021-01624-w

    Article  Google Scholar 

  41. Selver, E., Dalfi, H., & Yousaf, Z. (2020). Investigation of the impact and post-impact behaviour of glass and glass/natural fibre hybrid composites made with various stacking sequences: Experimental and theoretical analysis. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719900670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasir Khalid.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M.Y., Arif, Z.U. & Al Rashid, A. Investigation of Tensile and Flexural Behavior of Green Composites along with their Impact Response at Different Energies. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1399–1410 (2022). https://doi.org/10.1007/s40684-021-00385-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00385-w

Keywords

Navigation