Skip to main content
Log in

Pear cactus fiber with onion sheath biocarbon nanosheet toughened epoxy composite: mechanical, thermal, and electrical properties

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study explored the effectiveness of hardened epoxy containing pear cactus fiber and onion sheath biocarbon nanosheet. Mechanical, dielectric, and thermal properties of pear cactus epoxy composites containing varying volumes of biocarbon nanosheet are the focus of this investigation. For this study, biocarbon was extracted by pyrolysis from red onion peel. For 3 vol.% of biocarbon, tensile strength was up to 63%, and flexural strength was up to 44% higher than pure epoxy. The addition of reinforcements boosted the Izod impact toughness and hardness values by around 5 volume percent to roughly 94% and 92%, respectively. When biocarbon made up 5% of a material’s volume, improvements in dielectric constant and loss were around 5.8 and 0.23, respectively. The inclusion of biocarbon increased the thermal conductivity to a high of 0.44 W/mK. These composites might be used as a shielding material because to their improved dielectric, mechanical, and thermal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are within the manuscript.

References

  1. Alshahrani H, Arun Prakash VR (2022) J Clean Prod 133931. https://doi.org/10.1016/j.jclepro.2022.133931

  2. Muthu SS, Li Y, Hu JY et al (2012) Carbon footprint reduction in the textile process chain: recycling of textile materials. Fibers Polym 13:1065–1070. https://doi.org/10.1007/s12221-012-1065-0

    Article  Google Scholar 

  3. Ben Samuel J et al (2021) Silicon 13:1703–1712. https://doi.org/10.1007/s12633-020-00569-0

  4. Arun Prakash VR, Xavier JF, Ramesh G et al (2020) Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00938-0

  5. Arun KK et al (2022) Silicon 14:6837–6845. https://doi.org/10.1007/s12633-021-01456-y

  6. Merneedi A et al (2021) Experimental investigation on mechanical properties of carbon nanotube-reinforced epoxy composites for automobile application. J Nanomater 2021

  7. Ramaswamy R et al (2022) P Polym Compos 43(8):4899. https://doi.org/10.1002/pc.26735

  8. Kumar S et al (2022) Polym Compos 1. https://doi.org/10.1002/pc.26761

  9. Mohan Prasad M et al (2022) Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02154-w

  10. Castellano J et al (2021) Opuntia spp. fibre characterisation to obtain sustainable materials in the composites field. Polymers 13(13):2085

  11. Arun Prakash VR, Viswanathan R (2019) Int J Plast Technol 23:207–217. https://doi.org/10.1007/s12588-019-09251-6

  12. Jayabalakrishnan D, Saravanan K, Ravi S et al (2021) Silicon 13:2509–2517. https://doi.org/10.1007/s12633-020-00612-0

  13. Prabhakar MN, Shah AUR, Rao KC et al (2015) Fibers Polym 16:1119–1124. https://doi.org/10.1007/s12221-015-1119-1

  14. Suthan R et al (2021) Silicon 13:1199–1207. https://doi.org/10.1007/s12633-020-00508-z

  15. Alshahrani H, Arun Prakash VR (2022) Prog Org Coat 172:107080. https://doi.org/10.1016/j.porgcoat.2022.107080

  16. Alshahrani H, Prakash VRA (2022) Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02801-w

  17. Mayer JA, Cushman JC (2019) Nutritional and mineral content of prickly pear cactus: a highly water‐use efficient forage, fodder and food species. J Agron Crop Sci 205(6):625–634

  18. Prabhu P et al (2022) Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02177-3

  19. Rajadurai A (2016) Appl Surf Sci 384:99-106. https://doi.org/10.1016/j.apsusc.2016.04.185

  20. Prakash VRA, Viswanthan R (2019) Compos Part A Appl Sci Manuf 118:317–326. https://doi.org/10.1016/j.compositesa.2019.01.008

  21. Rajadurai A (2017) Def Technol 13(1):40-46. https://doi.org/10.1016/j.dt.2016.11.004

  22. Jayabalakrishnan D et al (2021) Polym Compos. https://doi.org/10.1002/pc.26393

  23. Merizgui T et al (2021) J Magn Magn Mater 536:168118. https://doi.org/10.1016/j.jmmm.2021.168118

  24. Merizgui T et al (2019) Mater Res Express 6(4):046102. https://doi.org/10.1088/2053-1591/aaf9de

  25. Balaji N et al (2022) Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02650-7

  26. Mohana Krishnudu D et al (2022) J Nat Fibers 19(1):339-348. https://doi.org/10.1080/15440478.2020.1745115

  27. Bhaskar KB, Santhanam V, Devaraju A (2020) Dielectric strength analysis of acacia nilotica with chemically treated sisal fiber reinforced polyester composite. Dig J Nanomater Biostructures 15(1):107–113

  28. Mohamed RM, Suhaimi UA (2021) The properties of coconut coir fiber reinforced epoxy composites. Int J Synergy Eng Technol 2(1):103–108

  29. Bhagat et al (2014) Polym Compos 35 (5):925–930. https://doi.org/10.1016/j.jcis.2017.01.105

  30. Srivastava A, Madhusoodan M (2015) Int J Res EngTechnol 4 (04):2395-0056

  31. Jayamani E et al (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544

  32. Ridzuan MJM et al (2020) Effect of natural filler loading, multi-walled carbon nanotubes (MWCNTs), and moisture absorption on the dielectric constant of natural filled epoxy composites. Mater Sci Eng B 262:114744

  33. Dhal JP, Mishra SC (2013) Processing and properties of natural fiber-reinforced polymer composite. J Mater 2013

  34. Xia C, Garcia A, Shi S et al (2016) Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity. Sci Rep 6:34726. https://doi.org/10.1038/srep34726

  35. Biswas S et al (2015) Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Procedia Eng 105:933–939

  36. Dinesh T, Kadirvel A, Vincent (2019) Silicon 11:2487–2498. https://doi.org/10.1007/s12633-018-9886-0

  37. Arun Prakash VR, Rajadurai A (2016) Appl Phys A 122 875. https://doi.org/10.1007/s00339-016-0411-2

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ramaswamy R—concept and research work.

Kaliappan S—facilitation and concept of research work.

Natrayan L—concept and research work.

Pravin P Patil—concept and research work.

Corresponding author

Correspondence to Ramaswamy R.

Ethics declarations

Ethical approval

NA.

Code of ethics

NA.

Conflict of interests

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, R., S, K., L, N. et al. Pear cactus fiber with onion sheath biocarbon nanosheet toughened epoxy composite: mechanical, thermal, and electrical properties. Biomass Conv. Bioref. 14, 9077–9085 (2024). https://doi.org/10.1007/s13399-022-03335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03335-x

Keywords

Navigation