Skip to main content

Advertisement

Log in

Valorization of bagasse alkali lignin to water-soluble derivatives through chemical modification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Black liquor is the by-product of the pulping process where the lignin, hemicellulose, and extractive materials are separated from wood to produce paper pulp. As one of the primary lignin sources, black liquor is considered an important energy source from biomass to produce biofuels and value-added chemicals. However, soda alkaline lignin has limited industrial applications due to its insolubility in water and lack of reactivity. Therefore, chemical modification is essential to enhance its industrial applications. In this study, alkali lignin from bagasse was modified through sulfonation, sulfomethylation, and amination processes using different reaction conditions. The structural analysis of obtained products was investigated by FTIR and 1H-NMR. The molecular weight distribution and thermal stability of the water-soluble products were analyzed using gel permeation chromatography (GPC) and thermogravimetric analysis (TGA), respectively. The elemental analysis was used to measure the elements (CHNSO) of the obtained water-soluble derivatives. The chemical structure analysis of the samples with FTIR and 1HNMR confirmed the modification processes. The results indicate that modification led to increased water solubility and a decrease in the precipitation pH of lignin samples, due to the introduction of sulfonate and amin functunal groups on lignin. In addition, the molecular weight and thermal stability of modified lignins were increased due to the presence of sulfonate and amine groups compared to unmodified lignin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdulkhani A, Alizadeh P, Hedjazi S, Hamzeh Y (2017) Potential of Soya as a raw material for a whole crop biorefinery. Renew Sustain Energy Rev 75https://doi.org/10.1016/j.rser.2016.10.082

  2. Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR (2007) Chemicals, materials, and energy from biomass: a review. ACS Symp Ser 954:2–30

    Article  CAS  Google Scholar 

  3. Zadeh ZE, Abdulkhani A, Saha B (2020) Characterization of fast pyrolysis bio-oil from hardwood and softwood lignin. Energies. https://doi.org/10.3390/en13040887

    Article  Google Scholar 

  4. Mboowa D (2021) A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01243-6

    Article  Google Scholar 

  5. Abdulkhani A, Amiri E, Sharifzadeh A et al (2019) Concurrent production of sodium lignosulfonate and ethanol from bagasse spent liquor. J Environ Manage. https://doi.org/10.1016/j.jenvman.2018.10.032

    Article  PubMed  Google Scholar 

  6. Pan S, Wang G, Chen H et al (2021) Building a framework of aerobic deer manure/corn stover composting with black liquor/microbial inoculation. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01792-4

    Article  Google Scholar 

  7. Jin W, Tolba R, Wen J et al (2013) Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach. Electrochim Acta. https://doi.org/10.1016/j.electacta.2013.06.031

    Article  Google Scholar 

  8. Karimi S, Abdulkhani A, Ghazali AHB et al (2009) Color remediation of chemimechanical pulping effluent using combination of enzymatic treatment and Fenton reaction. Desalination. https://doi.org/10.1016/j.desal.2009.02.067

    Article  Google Scholar 

  9. Lou HM, Qiu XQ, Ouyang XP, Yang DJ (2003) Study on effects of modified lignosulfonate GCL2 on corrosion inhibition performances of carbon steel. Xiandai Huagong/Modern Chem Ind 23:179–181+197

  10. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. Chemsuschem 10:1861–1877. https://doi.org/10.1002/cssc.201700082

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Liang F, Feng D et al (2016) Sustainable utilization of lignocellulose: preparation of furan derivatives from carbohydrate biomass by bifunctional lignosulfonate-based catalysts. Catal Commun 84:159–162. https://doi.org/10.1016/j.catcom.2016.06.012

    Article  ADS  CAS  Google Scholar 

  12. Qiu X, Zeng W, Liang W et al (2016) Sulfobutylated lignosulfonate with ultrahigh sulfonation degree and its dispersion property in low-rank coal-water slurry. J Dispers Sci Technol 37:472–478. https://doi.org/10.1080/01932691.2015.1022658

    Article  CAS  Google Scholar 

  13. Krutov SM, Evtuguin DV, Ipatova EV et al (2015) Modification of acid hydrolysis lignin for value-added applications by micronization followed by hydrothermal alkaline treatment. Holzforschung 69:761–768. https://doi.org/10.1515/hf-2014-0264

    Article  CAS  Google Scholar 

  14. He W, Fatehi P (2015) Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture. RSC Adv. https://doi.org/10.1039/c5ra04526f

    Article  PubMed  Google Scholar 

  15. Konduri MKR, Fatehi P (2015) Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.5b00098

    Article  Google Scholar 

  16. He W, Zhang Y, Fatehi P (2016) Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids Surfaces A Physicochem Eng Asp 503:19–27. https://doi.org/10.1016/j.colsurfa.2016.05.009

    Article  CAS  Google Scholar 

  17. Winowiski T, Lebo S, Gretland K, Gustafsson J (2006) Characterization of sulfonated lignin dispersants by hydrophobic interactive chromatography. In: 1470th ed. ASTM Int. pp 79–84

  18. Guo F, Fang Z, Zhou TJ (2012) Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.02.108

    Article  PubMed  Google Scholar 

  19. Lin KYA, Lai HK, Chen ZY (2017) Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J Taiwan Inst Chem Eng 78:337–343. https://doi.org/10.1016/j.jtice.2017.06.029

    Article  CAS  Google Scholar 

  20. Liang WX, Qiu XQ, Yang DJ, Lou HM (2007) Modification of wheat straw alkali lignin by oxidation and sulfomethylation. Huanan Ligong Daxue Xuebao/Journal South China Univ Technol (Natural Sci 35:117–121

  21. Kamoun A, Jelidi A, Chaabouni M (2003) Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer-water reducer for cement. Cem Concr Res 33:995–1003. https://doi.org/10.1016/S0008-8846(02)01098-0

    Article  CAS  Google Scholar 

  22. Chen C, Zhu M, Li M et al (2016) Epoxidation and etherification of alkaline lignin to prepare water-soluble derivatives and its performance in improvement of enzymatic hydrolysis efficiency. Biotechnol Biofuels 9https://doi.org/10.1186/s13068-016-0499-9

  23. Kalliola A, Vehmas T, Liitiä T, Tamminen T (2015) Alkali-O2 oxidized lignin – a bio-based concrete plasticizer. Ind Crops Prod 74:150–157. https://doi.org/10.1016/j.indcrop.2015.04.056

    Article  CAS  Google Scholar 

  24. Qin Y, Mo W, Yu L et al (2016) A light-colored hydroxypropyl sulfonated alkali lignin for utilization as a dye dispersant. Holzforschung 70:109–116. https://doi.org/10.1515/hf-2015-0009

    Article  CAS  Google Scholar 

  25. Mohamad Ibrahim MN, Nur Azreena I, Nor Nadiah MY, Mohd Saaid I (2006) Lignin graft copolymer as a drilling mud thinner for high temperature well. J Appl Sci 6:1808–1813. https://doi.org/10.3923/jas.2006.1808.1813

    Article  Google Scholar 

  26. Aso T, Koda K, Kubo S et al (2013) Preparation of novel lignin-based cement dispersants from isolated lignins. J Wood Chem Technol 33:286–298. https://doi.org/10.1080/02773813.2013.794841

    Article  CAS  Google Scholar 

  27. Samson Nesaraj A, Wariyar PC, Devasahayam M et al (1998) Evaluation of a commercial lignin sample as expander for lead- acid battery negative plate by cyclic voltammetry studies. Bull Electrochem 14:171–176

    Google Scholar 

  28. Breum NO, Nielsen BH, Lyngbye M, Midtgård U (1999) Dustiness of chopped straw as affected by lignosulfonate as a dust suppressant. Ann Agric Environ Med 6:133–140

    CAS  PubMed  Google Scholar 

  29. Graichen FHM, Grigsby WJ, Hill SJ et al (2017) Yes, we can make money out of lignin and other bio-based resources. Ind Crops Prod 106:74–85. https://doi.org/10.1016/j.indcrop.2016.10.036

    Article  CAS  Google Scholar 

  30. Zhu W, Westman G, Theliander H (2014) Investigation and characterization of lignin precipitation in the lignoboost process. J Wood Chem Technol 34:77–97. https://doi.org/10.1080/02773813.2013.838267

    Article  CAS  Google Scholar 

  31. Inwood JPW, Pakzad L, Fatehi P (2018) Production of sulfur containing kraft lignin products. BioResources 13:53–70. https://doi.org/10.15376/biores.13.1.53-70

  32. Pan H, Sun G, Zhao T (2013) Synthesis and characterization of aminated lignin. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2013.04.049

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao W, Inwood JPW, Fatehi P (2019) Sulfonation of hydroxymethylated lignin and its application. J Bioresour Bioprod 4:80–88. https://doi.org/10.21967/jbb.v4i2.228

    Article  Google Scholar 

  34. Negi H, Singh RK (2020) A review on lignin utilization in petroleum exploration, petroleum products formulation, bio-fuel production, and oil spill clean-up. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01126-w

    Article  Google Scholar 

  35. Wu H, Chen F, Feng Q, Yue X (2012) Oxidation and sulfomethylation of alkali-extracted lignin from corn stalk. BioResources 7:2742–2751

    Article  CAS  Google Scholar 

  36. Zhu W, Theliander H (2015) Precipitation of lignin from softwood black liquor: an investigation of the equilibrium and molecular properties of lignin. BioResources. https://doi.org/10.15376/biores.10.1.1696-1715

  37. Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresour Technol 79:103–111. https://doi.org/10.1016/S0960-8524(01)00056-6

    Article  PubMed  Google Scholar 

  38. Suota MJ, da Silva TA, Zawadzki SF et al (2021) Chemical and structural characterization of hardwood and softwood LignoForce™ lignins. Ind Crops Prod 173:114138. https://doi.org/10.1016/j.indcrop.2021.114138

    Article  CAS  Google Scholar 

  39. Yang W, Jiao L, Wang X et al (2021) Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int J Biol Macromol 166:1312–1319. https://doi.org/10.1016/j.ijbiomac.2020.11.012

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Zhang H, Zhu Z, Fu S (2020) High-value utilization of hydroxymethylated lignin in polyurethane adhesives. Int J Biol Macromol 152:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.321

    Article  CAS  PubMed  Google Scholar 

  41. Matsushita Y, Yasuda S (2005) Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol 96:465–470. https://doi.org/10.1016/j.biortech.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  42. Ghavidel N, Konduri MKR, Fatehi P (2021) Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Ind Crops Prod 172:113950. https://doi.org/10.1016/j.indcrop.2021.113950

    Article  CAS  Google Scholar 

  43. Huang C, Ma J, Zhang W et al (2018) Preparation of lignosulfonates from biorefinery lignins by sulfomethylation and their application as a water reducer for concrete. Polym. 10

  44. Shen Q, Zhang T, Zhu MF (2008) A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surfaces A Physicochem Eng Asp 320:57–60. https://doi.org/10.1016/j.colsurfa.2008.01.012

    Article  CAS  Google Scholar 

  45. Wu J, Chandra R, Takada M et al (2020) Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis. Bioresour Technol 315:123789. https://doi.org/10.1016/j.biortech.2020.123789

    Article  CAS  PubMed  Google Scholar 

  46. Gao W, Inwood JPW, Fatehi P (2019) Sulfonation of phenolated kraft lignin to produce water soluble products. J Wood Chem Technol. https://doi.org/10.1080/02773813.2019.1565866

    Article  Google Scholar 

  47. Taherzadeh Ghahfarrokhi M, Zeinali S, Bagheri H (2021) Preparation of amine–modified lignin and its applicability toward online micro–solid phase extraction of valsartan and losartan in urine samples. J Chromatogr A 1643:462081. https://doi.org/10.1016/j.chroma.2021.462081

    Article  CAS  PubMed  Google Scholar 

  48. Madzhidova VE, Dalimova GN, Abduazimov KA (1998) Sulfomethylation of lignins. Chem Nat Compd. https://doi.org/10.1007/BF02249140

    Article  Google Scholar 

  49. Qian Y, Deng Y, Yi C et al (2011) Solution behaviors and adsorption characteristics of sodium lignosulfonate under different pH conditions. BioResources. https://doi.org/10.15376/biores.6.4.4686-4695

  50. Wu H, Chen F, Feng Q, Yue X (2012) Oxidation and sulfomethylation of alkali-extracted lignin from corn stalk. BioResources. https://doi.org/10.15376/biores.7.3.2742-2751

  51. Ämmälä A, Laitinen O, Sirviö JA, Liimatainen H (2019) Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding. Ind Crops Prod 140:111664. https://doi.org/10.1016/j.indcrop.2019.111664

    Article  CAS  Google Scholar 

  52. Pin TC, Nascimento VM, Costa AC et al (2020) Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renew Energy 161:579–592. https://doi.org/10.1016/j.renene.2020.07.078

    Article  CAS  Google Scholar 

  53. Yue X, Chen F, Zhou X (2011) Improved interfacial bonding of PVC/wood-flour composites by lignin amine modification. BioResources 6:2022–2034. https://doi.org/10.15376/biores.6.2.2022-2034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdulkhani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1578 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkhani, A., Khorasani, Z., Hamzeh, Y. et al. Valorization of bagasse alkali lignin to water-soluble derivatives through chemical modification. Biomass Conv. Bioref. 14, 8639–8647 (2024). https://doi.org/10.1007/s13399-022-02935-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02935-x

Keywords

Navigation