Skip to main content
Log in

Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research study showed the effectiveness of amino silane-grafted areca fibre and orange peel biochar particles in the improvement of mechanical, thermal conductivity and electron admittance (dielectric) properties of epoxy resin biocomposite. The study was performed to investigate the effect of silane treatment on fibre and their relative outcomes in the composite’s properties. The raw chopped fibre and peel-dried particles are treated using amino silane using the acid hydrolysis method and air-dried using an oven. The oven-dried areca nut fibre and biochar particles are then used for making composites by a hand layup process and characterized as per the ASTM standards. According to the results, the mechanical properties were enhanced by 64% and 50% for tensile and flexural strengths, respectively and improved impact resistances by around 93%. Similarly, the composite designation RAB3 gives the highest thermal conductivity of 0.426 w/mK. The dielectric properties increased gradually with the introduction of orange peel biochar particles of significant volume. The highest dielectric constant of 6.4 with a loss factor of 1.5 was noted for the RAB3 composite. The SEM fractography shows better adhesion of biochar and areca fibre with resin, due to the silane treatment process and the pore structure of biochar. With these improved essential properties, the developed epoxy biocomposite could be used in food storage containers and packaging stuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. Prakash VA, Rajadurai A, Jayaseelan V, Das SJ, Murali M, Jaisingh SJ (2019) Role of silanized magnetic Fe2O3 particle in heat dissipation and microwave shielding behavior of E-glass fibre-reinforced epoxy resin composite. Materials Research Express 6(7):076113

    Article  CAS  ADS  Google Scholar 

  2. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273

    Article  Google Scholar 

  3. Prabhu P, Jayabalakrishnan D, Balaji V, Bhaskar K, Maridurai T, Prakash VR (2022) Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02177-3

  4. Zhao Y, Tao C, Xiao G, Wei G, Li L, Liu C, Su H (2016) Controlled synthesis and photocatalysis of sea urchin-like Fe 3 O 4@ TiO 2@ Ag nanocomposites. Nanoscale 8(9):5313–5326

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Chethan MR, Krishna SG, Chennakeshava R, Mahesh D (2016) Study on tensile analysis of untreated chopped natural areca sheath fiber reinforced polymer matrix bio-composites. Int J Eng Res Adv Technol 2:338–393

    Google Scholar 

  6. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  7. Alavudeen A, Thiruchitrambalam M, Venkateshwaran N, Athijayamani A (2011) Review of natural fiber reinforced woven composite. Rev Adv Mater Sci 27:146–150

    CAS  Google Scholar 

  8. Muralidhar N, Kaliveeran V, Arumugam V, Srinivasulareddy I (2019) A study on areca nut husk fibre extraction, composite panel preparation and mechanical characteristics of the composites. J Inst Eng (India): Ser D 100(2):135–145

    CAS  Google Scholar 

  9. Kamath SS, Sampathkumar D, Bennehalli B (2017) A review on natural areca fibre reinforced polymer composite materials. Ciência & Tecnologia dos Materiais 29(3):106–128

    Article  Google Scholar 

  10. Naik P, Acharya SK, Sahoo P, Pradhan S (2021) Abrasive wear behaviour of orange peel (biowaste) particulate reinforced polymer composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 235(10):2099–2109

    Article  CAS  Google Scholar 

  11. Devens KU, Neto SP, Oliveira DLDA, Gonçalves MS (2018) Characterization of biochar from green coconut shell and orange peel wastes. Revista Virtual de Quimica 10(2):288–294

    Article  CAS  Google Scholar 

  12. Karthigairajan M, Nagarajan PK, Raviraja Malarvannan R, Ramesh Bapu BR, Jayabalakrishnan D, Maridurai T, Shanmuganathan VK (2021) Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application. SILICON 13(12):4421–4430

    Article  CAS  Google Scholar 

  13. Murugan MA, Jayaseelan V, Jayabalakrishnan D, Maridurai T, Kumar SS, Ramesh G, Prakash VR (2020) Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and silane-treated aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites. SILICON 12(8):1847–1856

    Article  CAS  Google Scholar 

  14. Arun Prakash VR, Depoures MV (2020) Effect of silicon coupling grafted ferric oxide and e-glass fibre in thermal stability, wear and tensile fatigue behaviour of epoxy hybrid composite. Silicon 12(11):2533–2544

    Article  Google Scholar 

  15. Ismail K, Ishak MAM, Ab Ghani Z, Abdullah MF, Safian MTU, Idris SS, ... & Hakimi NINM (2013). Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM). Renew energy, 55, 357-365

  16. Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59(6):2501–2510

    Article  CAS  PubMed  Google Scholar 

  17. Prakash VA, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  ADS  Google Scholar 

  18. Babushkina EA, Belokopytova LV, Grachev AM, Meko DM, Vaganov EA (2017) Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg Environ Change 17(6):1725–1737

    Article  Google Scholar 

  19. Sathees Kumar S (2020) Effect of natural fiber loading on mechanical properties and thermal characteristics of hybrid polyester composites for industrial and construction fields. Fibers and Polymers 21(7):1508–1514

    Article  CAS  Google Scholar 

  20. Merizgui T, Hadjadj A, Kious M, Arun Prakash VR (2020) Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/iron (III) oxide modified epoxy hybrid composite. Trans Electr Electron Mater 21(4):366–376

    Article  Google Scholar 

  21. Jagadeesh D, Kanny K, Prashantha K (2017) A review on research and development of green composites from plant protein-based polymers. Polym Compos 38(8):1504–1518

    Article  CAS  Google Scholar 

  22. Arun Prakash VR, Xavier JF, Ramesh G, Maridurai T, Kumar KS, Raj R (2020) Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00938-0

  23. Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(4):1–9

    Article  CAS  Google Scholar 

  24. Jayabalakrishnan D, Saravanan K, Ravi S, Prabhu P, Maridurai T, Prakash VR (2021) Fabrication and characterization of acrylonitrile butadiene rubber and stitched E-glass fibre tailored Nano-silica epoxy resin composite. SILICON 13(8):2509–2517

    Article  CAS  Google Scholar 

  25. Jayabalakrishnan D, Prabhu P, Iqbal MS, Mugendiran V, Ravi S, Prakash AV (2022) Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite. Polym Compos. https://doi.org/10.1002/pc.26393

  26. Alshahrani H, Arun Prakash VR (2022) Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02691-y

  27. Rahman M, Puneeth M, Aslam DA (2017) Impact properties of glass/Kevlar reinforced with nano clay epoxy composite. Compos B Eng 107:50–61

    Google Scholar 

  28. Landowski M, Strugała G, Budzik M, Imielińska K (2017) Impact damage in SiO2 nanoparticle enhanced epoxy–carbon fibre composites. Compos B Eng 113:91–99

    Article  CAS  Google Scholar 

  29. Ben Samuel J, Julyes Jaisingh S, Sivakumar K, Mayakannan AV, Arunprakash VR (2021) Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite. SILICON 13(6):1703–1712

    Article  CAS  Google Scholar 

  30. Loganathan TM, Sultan MTH, Jawaid M, Md Shah AU, Ahsan Q, Mariapan M, Majid MSBA (2020) Physical, thermal and mechanical properties of areca fibre reinforced polymer composites—an overview. J Bionic Eng 17(1):185–205

    Article  Google Scholar 

  31. Minugu OP, Gujjala R, Shakuntala O, Manoj P, Chowdary MS (2021) Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites. Proc Inst Mech Eng C J Mech Eng Sci 235(21):5626–5638

    Article  CAS  Google Scholar 

  32. Onifade DV, Ighalo JO, Adeniyi AG, Hameed K (2020) Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre. Mater Int 2(2):150–156

    Article  Google Scholar 

  33. Giorcelli M, Savi P, Khan A, Tagliaferro A (2019) Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass Bioenerg 122:466–471

    Article  CAS  Google Scholar 

  34. Torsello D, Ghigo G, Giorcelli M, Bartoli M, Rovere M, Tagliaferro A (2021) Tuning the microwave electromagnetic properties of biochar-based composites by annealing. Carbon Trends 4:100062

    Article  CAS  Google Scholar 

  35. Sundarakannan R, Arumugaprabu V, Manikandan V, Vigneshwaran S (2020) Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express 6(12):125349

    Article  Google Scholar 

  36. Li S, Xu Y, Jing X, Yilmaz G, Li D, Turng LS (2020) Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Compos B Eng 196:108120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Collaboration Funding program grant code (NU/RC/SERC/11/4).

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed.

Corresponding author

Correspondence to Hassan Alshahrani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, H., Prakash, V.R.A. Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites. Biomass Conv. Bioref. 14, 8081–8089 (2024). https://doi.org/10.1007/s13399-022-02801-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02801-w

Keywords

Navigation