Skip to main content

Advertisement

Log in

Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Carbon dioxide levels in the earth atmosphere have been rising to alarming levels over the past few decades by human activity and thus caused global climate change due to the “greenhouse effect,” which in turn brought about adverse effects on the planet. Major sources of carbon dioxide (CO2) emissions include fossil fuel combustion, land-use change, industrial processing, respiration of various life forms, and decomposition of biomass. However, over the past 20 years, there has been a continuous research effort on the reducing carbon dioxide levels, by converting into the syngas, methanol, dimethyl carbonate, epoxides, polymers, and fine chemicals through chemical catalytic or biotransformation routes. Biological conversion including microbial and/or enzymatic conversion holds high potential as an alternative to the energy-intensive chemical conversion of CO2. Besides being the low energy process, bio-conversion of CO2 offers several unique advantages such as an easy and improved production at a high scale with a better conversion rate, the possibility of a diverse product range, and hyper-production by genetic modifications with zero competition for land with food crops. To this end, products that use CO2 biotransformation by the global biotech and chemical industry are only about 11.5 million tons annually, and it is a very small fraction of the approximately 24 billion tons of annual CO2 emission. Hence, there is an enormous scope for generation of high end biorefineries through CO2 bioconversion systems. Here, we review the various production sources of CO2, the metabolic and enzymatic CO2 conversion pathways, and the commercialization potentiality of various green chemicals from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mikkelsen M, Jørgensen M, Krebs FC (2010) Synthesis and characterization of zwitterionic carbon dioxide fixing reagents. Int J Greenh Gas Control 4:452–458. https://doi.org/10.1016/j.ijggc.2009.11.008

    Article  Google Scholar 

  2. Le Quéré C, Andrew RM, Canadell JG et al (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649. https://doi.org/10.5194/essd-8-605-2016

    Article  Google Scholar 

  3. Orsini F, Marrone P (2019) Approaches for a low-carbon production of building materials: a review. J Clean Prod 241:118380. https://doi.org/10.1016/j.jclepro.2019.118380

    Article  Google Scholar 

  4. BP p.l.c. (2015) BP Energy Outlook 2035: February 2015. 96. https://doi.org/10.5555/jan.010a.2013

  5. Energy Technology Perspectives (2014) Harnessing electricity’s potential, IEA, Paris https://www.iea.org/reports/energy-technology-perspectives-2014

  6. Shi J, Jiang Y, Jiang Z et al (2015) Enzymatic conversion of carbon dioxide. Chem Soc Rev 44:5981–6000. https://doi.org/10.1039/c5cs00182j

    Article  Google Scholar 

  7. Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189. https://doi.org/10.1039/c3ee42350f

    Article  Google Scholar 

  8. Chen Z, Wang X, Liu L (2019) Electrochemical reduction of carbon dioxide to value-added products: the electrocatalyst and microbial electrosynthesis. Chem Rec 19:1272–1282. https://doi.org/10.1002/tcr.201800100

    Article  Google Scholar 

  9. Irfan M, Bai Y, Zhou L et al (2019) Direct microbial transformation of carbon dioxide to value-added chemicals: a comprehensive analysis and application potentials. Bioresour Technol 288:121401. https://doi.org/10.1016/j.biortech.2019.121401

    Article  Google Scholar 

  10. Venkata Mohan S, Modestra JA, Amulya K et al (2016) A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol 34:506–519. https://doi.org/10.1016/j.tibtech.2016.02.012

    Article  Google Scholar 

  11. Chiranjeevi P, Bulut M, Breugelmans T et al (2019) Current trends in enzymatic electrosynthesis for CO2 reduction. Curr Opin Green Sustain Chem 16:65–70. https://doi.org/10.1016/j.cogsc.2019.02.007

    Article  Google Scholar 

  12. Sánchez OG, Birdja YY, Bulut M et al (2019) Recent advances in industrial CO2 electroreduction. Curr Opin Green Sustain Chem 16:47–56. https://doi.org/10.1016/j.cogsc.2019.01.005

    Article  Google Scholar 

  13. Tackett BM, Gomez E, Chen JG (2019) Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat Catal 2:381–386. https://doi.org/10.1038/s41929-019-0266-y

    Article  Google Scholar 

  14. Xu Q, Yu J, Zhang J et al (2015) Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem Commun 51:7950–7953. https://doi.org/10.1039/C5CC01087J

    Article  Google Scholar 

  15. Nesbitt NT, Ma M, Trześniewski BJ et al (2018) Au dendrite electrocatalysts for CO2 electrolysis. J Phys Chem C 122:10006–10016. https://doi.org/10.1021/acs.jpcc.8b01831

    Article  Google Scholar 

  16. Sun Z, Ma T, Tao H et al (2017) Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3:560–587. https://doi.org/10.1016/j.chempr.2017.09.009

    Article  Google Scholar 

  17. DuChene JS, Tagliabue G, Welch AJ et al (2018) Hot hole collection and hotoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett 18:2545–2550. https://doi.org/10.1021/acs.nanolett.8b00241

    Article  Google Scholar 

  18. Sahara G, Kumagai H, Maeda K et al (2016) Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)–Re(I) complex photocatalyst and CoOx/TaON photoanode. J Am Chem Soc 138:14152–14158. https://doi.org/10.1021/jacs.6b09212

    Article  Google Scholar 

  19. Song JT, Ryoo H, Cho M et al (2017) Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction. Adv Energy Mater 7:1601103. https://doi.org/10.1002/aenm.201601103

    Article  Google Scholar 

  20. SundarRajan PS, Gopinath KP, Greetham D, Antonysamy AJ (2019) A Review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J Clean Prod 210:445–458

    Article  Google Scholar 

  21. Arun J, Panchamoorthy GK, SundarRajan PS, Vargees Felix V, Joselyn MM, Rajagopal M (2020) A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresour Technol Rep 11:100477

    Article  Google Scholar 

  22. Denman K, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–90

    Google Scholar 

  23. US DOE (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science; Report from the March 2008 Workshop, DOE/SC-108.

  24. Saito T, Fang X, Stohl A et al (2015) Extraordinary halocarbon emissions initiated by the 2011 Tohoku earthquake. Geophys Res Lett 42:2500–2507. https://doi.org/10.1002/2014GL062814

    Article  Google Scholar 

  25. Zhou X, Chen Z, Cui Y (2016) Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan. China Environ Geochem Health 38:1067–1082. https://doi.org/10.1007/s10653-015-9773-1

    Article  Google Scholar 

  26. Cramer W Bondeau A Woodward FI Others (2001) Global response of terrestrial ecosystem structure and function to{CO}{_2} and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373

  27. Le Quéré C, Andres RJ, Boden T et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185. https://doi.org/10.5194/essd-5-165-2013

    Article  Google Scholar 

  28. Van De Wal RSW, De Boer B, Lourens LJ et al (2011) Reconstruction of a continuous high-resolution CO 2 record over the past 20 million years. Clim Past 7:1459–1469. https://doi.org/10.5194/cp-7-1459-2011

    Article  Google Scholar 

  29. Defra U (2014) The 2014 government greenhouse gas conversion factors for company reporting.

  30. Robin S Krahe M Johnson T (2012) Aviation report market based mechanisms to curb greenhouse gas emissions from international aviation. Gland, Switzerland:

  31. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Sci (80- ) 333:988–993. https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  32. Arneth A, Sitch S, Pongratz J et al (2017) Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci 10:79–84. https://doi.org/10.1038/ngeo2882

    Article  Google Scholar 

  33. Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus, Ser B Chem Phys Meteorol 62:337–351. https://doi.org/10.1111/j.1600-0889.2010.00473.x

    Article  Google Scholar 

  34. Friedlingstein P, Houghton RA, Marland G et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812. https://doi.org/10.1038/ngeo1022

    Article  Google Scholar 

  35. World steel Association (2011) Steel’s contribution to a low carbon future: World steel position paper

  36. Ba-Shammakh M, Caruso H, Elkamel A et al (2008) Analysis and optimization of carbon dioxide emission mitigation options in the cement industry. Am J Environ Sci 4:482–490. https://doi.org/10.3844/ajessp.2008.482.490

    Article  Google Scholar 

  37. Claassens NJ (2017) A warm welcome for alternative CO2 fixation pathways in microbial biotechnology. Microb Biotechnol 10:31–34. https://doi.org/10.1111/1751-7915.12456

    Article  Google Scholar 

  38. Mistry AN, Ganta U, Chakrabarty J, Dutta S (2019) A review on biological systems for CO2 sequestration: organisms and their pathways. Environ Prog Sustain Energy 38:127–136. https://doi.org/10.1002/ep.12946

    Article  Google Scholar 

  39. Chandel AK, Garlapati VK, Jeevan Kumar SP et al (2020) The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioprod Biorefining 14:830–844. https://doi.org/10.1002/bbb.2104

    Article  Google Scholar 

  40. Kumar M, Sundaram S, Gnansounou E et al (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour Technol 247:1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050

    Article  Google Scholar 

  41. Schulman M, Parker D, Ljungdahl LG, Wood HG (1972) Total synthesis of acetate from CO2 V. determination by mass analysis of the different types of acetate formed from13CO2 by heterotrophic bacteria. J Bacteriol Parasitol 109:633–644

    Article  Google Scholar 

  42. Figueroa IA, Barnum TP, Somasekhar PY et al (2018) Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci U S A 115:E92–E101. https://doi.org/10.1073/pnas.1715549114

    Article  Google Scholar 

  43. Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187

    Article  Google Scholar 

  44. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?

  45. Ramos-Vera WH, Berg IA, Fuchs G (2009) Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J Bacteriol 191:4286–4297. https://doi.org/10.1128/JB.00145-09

    Article  Google Scholar 

  46. Huber H, Gallenberger M, Jahn U et al (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci U S A 105:7851–7856. https://doi.org/10.1073/pnas.0801043105

    Article  Google Scholar 

  47. Blöchl E, Rachel R, Burggraf S et al (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21. https://doi.org/10.1007/s007920050010

    Article  Google Scholar 

  48. Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Sci (80- ) 318:1782–1786. https://doi.org/10.1126/science.1149976

    Article  Google Scholar 

  49. Hügler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173. https://doi.org/10.1007/s00203-002-0512-5

    Article  Google Scholar 

  50. Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256. https://doi.org/10.1007/BF00413138

    Article  Google Scholar 

  51. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643. https://doi.org/10.1111/j.1432-1033.1993.tb18074.x

    Article  Google Scholar 

  52. Alber BE, Fuchs G (2002) Propionyl-coenzyme a synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143. https://doi.org/10.1074/jbc.M110802200

    Article  Google Scholar 

  53. Hügler M, Menendez C, Schägger H, Fuchs G (2002) A key enzyme of the 3-hydroxypropionate cycle for autotrophic CO 2 fixation. Soc 184:2404–2410

    Google Scholar 

  54. Erb TJ, Brecht V, Fuchs G et al (2009) Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc Natl Acad Sci U S A 106:8871–8876. https://doi.org/10.1073/pnas.0903939106

    Article  Google Scholar 

  55. Schwander T, Erb TJ (2016) Do it your (path)way –synthetische Wege zur CO2-Fixierung: Stoffwechseldesign. BIOspektrum 22:590–592. https://doi.org/10.1007/s12268-016-0733-9

    Article  Google Scholar 

  56. Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 107:8889–8894. https://doi.org/10.1073/pnas.0907176107

    Article  Google Scholar 

  57. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72. https://doi.org/10.1016/j.copbio.2015.03.008

    Article  Google Scholar 

  58. Erb TJ, Zarzycki J (2016) Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Curr Opin Chem Biol 34:72–79. https://doi.org/10.1016/j.cbpa.2016.06.026

    Article  Google Scholar 

  59. Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8:1–11. https://doi.org/10.1038/ncomms14724

    Article  Google Scholar 

  60. Weiss TL, Young EJ, Ducat DC (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 44:236–245. https://doi.org/10.1016/j.ymben.2017.10.009

    Article  Google Scholar 

  61. Zhu Q (2019) Developments on CO2-utilization technologies. Clean Energy 3:85–100. https://doi.org/10.1093/ce/zkz008

    Article  Google Scholar 

  62. Luedin SM, Storelli N, Danza F et al (2019) Mixotrophic growth under micro-oxic conditions in the purple sulfur bacterium “thiodictyon syntrophicum.” Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.00384

    Article  Google Scholar 

  63. Nybo SE, Khan NE, Woolston BM, Curtis WR (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120. https://doi.org/10.1016/j.ymben.2015.04.008

    Article  Google Scholar 

  64. Park JY, Kim BN, Kim YH, Min J (2018) Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity. J Biotechnol 288:9–14. https://doi.org/10.1016/j.jbiotec.2018.10.007

    Article  Google Scholar 

  65. Tabita FR (2004) Research on carbon dioxide fixation in photosynthetic microorganisms (1971-present). Photosynth Res 80:315–332. https://doi.org/10.1023/B:PRES.0000030455.46192.47

    Article  Google Scholar 

  66. Fixena KR, Zhenga Y, Harrisb DF et al (2016) Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A 113:10163–10167. https://doi.org/10.1073/pnas.1611043113

    Article  Google Scholar 

  67. Rittmann S, Seifert A, Herwig C (2015) Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit Rev Biotechnol 35:141–151. https://doi.org/10.3109/07388551.2013.820685

    Article  Google Scholar 

  68. Mohd Yasin NH, Fukuzaki M, Maeda T et al (2013) Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. Int J Hydrogen Energy 38:10277–10283. https://doi.org/10.1016/j.ijhydene.2013.06.065

    Article  Google Scholar 

  69. Mohd Yasin NH, Maeda T, Hu A et al (2015) CO2 sequestration by methanogens in activated sludge for methane production. Appl Energy 142:426–434. https://doi.org/10.1016/j.apenergy.2014.12.069

    Article  Google Scholar 

  70. Berg IA, Kockelkorn D, Ramos-Vera WH et al (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460. https://doi.org/10.1038/nrmicro2365

    Article  Google Scholar 

  71. Gonzales JN, Matson MM, Atsumi S (2019) Nonphotosynthetic biological CO2 reduction. Biochemistry 58:1470–1477. https://doi.org/10.1021/acs.biochem.8b00937

    Article  Google Scholar 

  72. Hicks N, Vik U, Taylor P et al (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32. https://doi.org/10.1016/j.tibtech.2016.06.011

    Article  Google Scholar 

  73. Liu H Song T Fei K et al (2018) Microbial electrosynthesis of organic chemicals from CO2 by Clostridium scatologenes ATCC 25775T. Bioresour Bioprocess 5:. https://doi.org/10.1186/s40643-018-0195-7

  74. Saini R, Majhi MC, Kapoor R et al (2011) Carbon dioxide (CO2) utilizing strain database. African J Biotechnol 10:13818–13822. https://doi.org/10.5897/ajb10.2643

    Article  Google Scholar 

  75. Storelli N, Saad MM, Frigaard NU et al (2014) Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno. EuPA Open Proteom 2:17–30. https://doi.org/10.1016/j.euprot.2013.11.010

    Article  Google Scholar 

  76. Keller MW, Schut GJ, Lipscomb GL et al (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A 110:5840–5845. https://doi.org/10.1073/pnas.1222607110

    Article  Google Scholar 

  77. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423. https://doi.org/10.1007/s00253-009-2003-y

    Article  Google Scholar 

  78. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427. https://doi.org/10.1007/s00449-007-0137-9

    Article  Google Scholar 

  79. Tracy BP, Jones SW, Fast AG et al (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. https://doi.org/10.1016/j.copbio.2011.10.008

    Article  Google Scholar 

  80. Ramachandriya KD, Kundiyana DK, Wilkins MR et al (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299. https://doi.org/10.1016/j.apenergy.2013.06.017

    Article  Google Scholar 

  81. Ampelli C Perathoner S Centi G (2015) CO2 utilization: an enabling element to move to a resource-and energy-efficient chemical and fuel production. Philos Trans R Soc A Math Phys Eng Sci 373:. https://doi.org/10.1098/rsta.2014.0177

  82. Fast AG, Papoutsakis ET (2018) Functional expression of the Clostridium ljungdahlii acetyl-coenzyme A synthase in Clostridium acetobutylicum as demonstrated by a novel in vivo CO exchange activity en route to heterologous installation of a functional Wood-Ljungdahl pathway. Appl Environ Microbiol 84:2307–2317

    Article  Google Scholar 

  83. Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: NOVEL options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 33:60–72. https://doi.org/10.1016/j.copbio.2014.11.014

    Article  Google Scholar 

  84. Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109. https://doi.org/10.1128/AEM.02891-12

    Article  Google Scholar 

  85. Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum. Int J Syst Evol Microbiol 54:2223–2230. https://doi.org/10.1099/ijs.0.02975-0

    Article  Google Scholar 

  86. Paoli GC, Tabita FR (1998) Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Arch Microbiol 170:8–17. https://doi.org/10.1007/s002030050609

    Article  Google Scholar 

  87. Suzuki I, Werkman CH (1958) Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. II. Formation of phosphoglyceric acid. Arch Biochem Biophys 77:112–123. https://doi.org/10.1016/0003-9861(58)90047-X

    Article  Google Scholar 

  88. Wang W, Xiao S, Chao J et al (2008) Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock. J Microbiol Biotechnol 18:1747–1754. https://doi.org/10.4014/jmb.0700.737

    Article  Google Scholar 

  89. Brigham CJ, Budde CF, Holder JW et al (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464. https://doi.org/10.1128/JB.00493-10

    Article  Google Scholar 

  90. Pohlmann A, Fricke WF, Reinecke F et al (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262. https://doi.org/10.1038/nbt1244

    Article  Google Scholar 

  91. Ai C Zhang Q Ren C et al (2014) Genetically engineered lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9. https://doi.org/10.1371/journal.pone.0109461

  92. Grousseau E, Lu J, Gorret N et al (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98:4277–4290. https://doi.org/10.1007/s00253-014-5591-0

    Article  Google Scholar 

  93. Torella JP, Gagliardi CJ, Chen JS et al (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci U S A 112:2337–2342. https://doi.org/10.1073/pnas.1424872112

    Article  Google Scholar 

  94. Albuquerque MGE, Martino V, Pollet E et al (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76. https://doi.org/10.1016/j.jbiotec.2010.10.070

    Article  Google Scholar 

  95. Müller J, MacEachran D, Burd H et al (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79:4433–4439. https://doi.org/10.1128/AEM.00973-13

    Article  Google Scholar 

  96. Li H, Opgenorth PH, Wernick DG et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. AIChE Annu Meet Conf Proc 335:2012

    Google Scholar 

  97. Hawkins AS, McTernan PM, Lian H et al (2013) Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotechnol 24:376–384. https://doi.org/10.1016/j.copbio.2013.02.017

    Article  Google Scholar 

  98. Yu J, Dow A, Pingali S (2013) The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. Int J Hydrogen Energy 38:8683–8690. https://doi.org/10.1016/j.ijhydene.2013.04.153

    Article  Google Scholar 

  99. Gunnarsson IB, Alvarado-Morales M, Angelidaki I (2014) Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production. Environ Sci Technol 48:12464–12468. https://doi.org/10.1021/es504000h

    Article  Google Scholar 

  100. Li J, Zheng XY, Fang XJ et al (2011) A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresour Technol 102:6147–6152. https://doi.org/10.1016/j.biortech.2011.02.093

    Article  Google Scholar 

  101. Jajesniak P, Omar Ali H, Wong T (2014) Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J Bioprocess Biotech 4:3

    Google Scholar 

  102. Jansen MLA, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 30:190–197. https://doi.org/10.1016/j.copbio.2014.07.003

    Article  Google Scholar 

  103. Hädicke O, von Kamp A, Aydogan T, Klamt S (2018) OptMDFpathway: identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli. PLoS Comput Biol 14:1–24. https://doi.org/10.1371/journal.pcbi.1006492

    Article  Google Scholar 

  104. Savakis P, Tan X, Du W et al (2015) Photosynthetic production of glycerol by a recombinant cyanobacterium. J Biotechnol 195:46–51. https://doi.org/10.1016/j.jbiotec.2014.12.015

    Article  Google Scholar 

  105. Bang J, Lee SY (2018) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A 115:E9271–E9279. https://doi.org/10.1073/pnas.1810386115

    Article  Google Scholar 

  106. Döring V, Darii E, Yishai O et al (2018) Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS Synth Biol 7:2029–2036. https://doi.org/10.1021/acssynbio.8b00167

    Article  Google Scholar 

  107. Yishai O, Bouzon M, Döring V, Bar-Even A (2018) In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth Biol 7:2023–2028. https://doi.org/10.1021/acssynbio.8b00131

    Article  Google Scholar 

  108. Gonzalez De La Cruz J, Machens F, Messerschmidt K, Bar-Even A (2019) Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth Biol 8:911–917. https://doi.org/10.1021/acssynbio.8b00464

    Article  Google Scholar 

  109. Mattozzi MD, Ziesack M, Voges MJ et al (2013) Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab Eng 16:130–139. https://doi.org/10.1016/j.ymben.2013.01.005

    Article  Google Scholar 

  110. Guo L, Zhang F, Zhang C et al (2018) Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli. Biotechnol Bioeng 115:1571–1580

    Article  Google Scholar 

  111. Roger M, Brown F, Gabrielli W, Sargent F (2018) Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli. Curr Biol 28:140-145.e2. https://doi.org/10.1016/j.cub.2017.11.050

    Article  Google Scholar 

  112. Gleizer S, Ben-Nissan R, Bar-On YM et al (2019) Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179:1255-1263.e12. https://doi.org/10.1016/j.cell.2019.11.009

    Article  Google Scholar 

  113. Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886. https://doi.org/10.1128/AEM.02642-10

    Article  Google Scholar 

  114. Zhang S, Lu H, Lu Y (2013) Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution. Environ Sci Technol 47:13882–13888. https://doi.org/10.1021/es4031744

    Article  Google Scholar 

  115. Zhang T, Nie H, Bain TS et al (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6:217–224. https://doi.org/10.1039/c2ee23350a

    Article  Google Scholar 

  116. Jourdin L, Freguia S, Donose BC et al (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102. https://doi.org/10.1039/c4ta03101f

    Article  Google Scholar 

  117. Nevin K Woodard T Franks A et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. 1:e00103–e00110

  118. Marshall CW, Ross DE, Fichot EB et al (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420. https://doi.org/10.1128/AEM.02401-12

    Article  Google Scholar 

  119. Mohanakrishna G, Seelam JS, Vanbroekhoven K, Pant D (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss 183:445–462. https://doi.org/10.1039/c5fd00041f

    Article  Google Scholar 

  120. Ganigué R, Puig S, Batlle-Vilanova P et al (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238. https://doi.org/10.1039/c4cc10121a

    Article  Google Scholar 

  121. Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A Gen 274:237–242. https://doi.org/10.1016/j.apcata.2004.07.006

    Article  Google Scholar 

  122. Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090. https://doi.org/10.1016/j.biortech.2009.12.077

    Article  Google Scholar 

  123. Lau EY Wong SE Baker SE et al (2013) Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide. PLoS One 8:.https://doi.org/10.1371/journal.pone.0066187

  124. Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22:818–823. https://doi.org/10.1016/j.copbio.2011.06.006

    Article  Google Scholar 

  125. Forsyth C, Yip TWS, Patwardhan SV (2013) CO2 sequestration by enzyme immobilized onto bioinspired silica. Chem Commun 49:3191–3193. https://doi.org/10.1039/c2cc38225c

    Article  Google Scholar 

  126. Newman LM Clark L Ching C Zimmerma S (2010) Carbonic anhydrase polypeptides and uses thereof. U.S. Patent WO10081007.

  127. Alvizo O, Nguyen LJ, Savile CK et al (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Natl Acad Sci U S A 111:16436–16441. https://doi.org/10.1073/pnas.1411461111

    Article  Google Scholar 

  128. Lin W-R, Lai Y-C, Sung P-K et al (2018) Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J Taiwan Inst Chem E 93:131–141

    Article  Google Scholar 

  129. Alvarez-Guerra M, Quintanilla S, Irabien A (2012) Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J 207–208:278–284. https://doi.org/10.1016/j.cej.2012.06.099

    Article  Google Scholar 

  130. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100. https://doi.org/10.1007/s10008-011-1398-4

    Article  Google Scholar 

  131. Lu Y, yi Jiang Z, wei Xu S, Wu H (2006) Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate-silica hybrid gel. Catal Today 115:263–268. https://doi.org/10.1016/j.cattod.2006.02.056

    Article  Google Scholar 

  132. Lee SY Lim SY Seo D et al (2016) Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv Energy Mater 6. https://doi.org/10.1002/aenm.201502207

  133. Yadav RK, Baeg JO, Oh GH et al (2012) A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134:11455–11461. https://doi.org/10.1021/ja3009902

    Article  Google Scholar 

  134. Amao Y, Hamano A, Shimizu K (2012) Development of artificial leaf for solar hydrogen production. Energy Procedia 29:21–25. https://doi.org/10.1016/j.egypro.2012.09.004

    Article  Google Scholar 

  135. Beller M, Bornscheuer UT (2014) CO2 fixation through hydrogenation by chemical or enzymatic methods. Angew Chemie - Int Ed 53:4527–4528. https://doi.org/10.1002/anie.201402963

    Article  Google Scholar 

  136. Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 80(342):1382–1385. https://doi.org/10.1126/science.1244758

    Article  Google Scholar 

  137. Appel A, Bercaw J, Bocarsly A et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    Article  Google Scholar 

  138. Bassegoda A, Madden C, Wakerley DW et al (2014) Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc 136:15473–15476. https://doi.org/10.1021/ja508647u

    Article  Google Scholar 

  139. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci U S A 105:10654–10658. https://doi.org/10.1073/pnas.0801290105

    Article  Google Scholar 

  140. Zhang A, Carroll AL, Atsumi S (2017) Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS Microbiol Lett 364:1–7. https://doi.org/10.1093/femsle/fnx165

    Article  Google Scholar 

  141. Choi E-G, Yeon YJ, Min K, Kim YH (2018) Communication—CO 2 reduction to formate: an electro-enzymatic approach using a formate dehydrogenase from Rhodobacter capsulatus. J Electrochem Soc 165:H446–H448. https://doi.org/10.1149/2.0531809jes

    Article  Google Scholar 

  142. Parkin A Seravalli J Vincent K. et al (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc 10328–10329.

  143. Woolerton TW, Sheard S, Reisner E et al (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133. https://doi.org/10.1021/ja910091z

    Article  Google Scholar 

  144. Shin W, Lee SH, Shin JW et al (2003) Highly selective electrocatalytic conversion of CO2 to CO by carbon monoxide dehydrogenase from Moorella thermoacetica. J Am Chem Soc 125:14688–14689

    Article  Google Scholar 

  145. Yang ZY, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci U S A 109:19644–19648. https://doi.org/10.1073/pnas.1213159109

    Article  Google Scholar 

  146. Rebelein JG, Hu Y, Ribbe MW (2014) Differential reduction of CO2 by molybdenum and vanadium nitrogenases. Angew Chemie - Int Ed 53:11543–11546. https://doi.org/10.1002/anie.201406863

    Article  Google Scholar 

  147. Liang F, Lindblad P (2017) Synechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis. Metab Eng Commun 4:29–36. https://doi.org/10.1016/j.meteno.2017.02.002

    Article  Google Scholar 

  148. Wendell D, Todd J, Montemagno C (2010) Artificial photosynthesis in Ranaspumin-2 based foam. Nano Lett 10:3231–3236. https://doi.org/10.1021/nl100550k

    Article  Google Scholar 

  149. Glueck SM, Gömös S, Fabian WMF, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39:313–328. https://doi.org/10.1039/b807875k

    Article  Google Scholar 

  150. Kirimura K, Yanaso S, Kosaka S et al (2011) Production of p-aminosalicylic acid through enzymatic kolbeschmitt reaction catalyzed by reversible salicylic acid decarboxylase. Chem Lett 40:206–208. https://doi.org/10.1246/cl.2011.206

    Article  Google Scholar 

  151. Wuensch C, Pavkov-Keller T, Steinkellner G et al (2015) Regioselective enzymatic β-carboxylation of para-hydroxy-styrene derivatives catalyzed by phenolic acid decarboxylases. Adv Synth Catal 357:1909–1918. https://doi.org/10.1002/adsc.201401028

    Article  Google Scholar 

  152. Miyazaki M, Shibue M, Ogino K et al (2001) Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem Commun 1:1800–1801. https://doi.org/10.1039/b104873m

    Article  Google Scholar 

  153. Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices [5]. J Am Chem Soc 121:12192–12193. https://doi.org/10.1021/ja991899r

    Article  Google Scholar 

  154. Xu SW, Lu Y, Li J et al (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573. https://doi.org/10.1021/ie051407l

    Article  Google Scholar 

  155. Sun D, Zhang R, Liu Z et al (2005) Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO2. Macromolecules 38:5617–5624. https://doi.org/10.1021/ma047314h

    Article  Google Scholar 

  156. Wang X, Li Z, Shi J et al (2014) Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. ACS Catal 4:962–972. https://doi.org/10.1021/cs401096c

    Article  Google Scholar 

  157. Marques Netto CGC, Andrade LH, Toma HE (2018) Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. An Acad Bras Cienc 90:593–606. https://doi.org/10.1590/0001-3765201720170330

    Article  Google Scholar 

  158. Yadav RK, Baeg JO, Kumar A et al (2014) Graphene-BODIPY as a photocatalyst in the photocatalytic-biocatalytic coupled system for solar fuel production from CO2. J Mater Chem A 2:5068–5076. https://doi.org/10.1039/c3ta14442a

    Article  Google Scholar 

  159. Ji X, Su Z, Wang P et al (2016) Integration of artificial photosynthesis system for enhanced electronic energy-transfer efficacy: a case study for solar-energy driven bioconversion of carbon dioxide to methanol. Small 12:4753–4762. https://doi.org/10.1002/smll.201600707

    Article  Google Scholar 

  160. Schlager S, Dumitru LM, Haberbauer M et al (2016) Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode. Chemsuschem 9:631–635. https://doi.org/10.1002/cssc.201501496

    Article  Google Scholar 

  161. IEA; UNIDO (2011) Technology Roadmap, CCS in industrial applications. 1–52

  162. Raju ASK, Park CS, Norbeck JM (2009) Synthesis gas production using steam hydrogasification and steam reforming. Fuel Process Technol 90:330–336. https://doi.org/10.1016/j.fuproc.2008.09.011

    Article  Google Scholar 

  163. Gangadharan P, Kanchi KC, Lou HH (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 90:1956–1968. https://doi.org/10.1016/j.cherd.2012.04.008

    Article  Google Scholar 

  164. Zhang X, Lee CSM, Mingos DMP, Hayward DO (2003) Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating. Catal Lett 88(3–4):129–139

    Article  Google Scholar 

  165. Schaub G, Unruh D, Rohde M (2004) Synthetic hydrocarbon fuels and CO2 utilization. Stud Surf Sci Catal 153:17–24. https://doi.org/10.1016/s0167-2991(04)80214-3

    Article  Google Scholar 

  166. Hartley M Tam I (2012) Non-sequestration utilization options for carbon dioxide (CO2). Nexant’s ChemSystems PERP09/10S10.

  167. Treacy D, Ross JRH (2004) The Potential of the CO2 reforming of CH4 as a method of CO2 mitigation. A thermodynamic study Prepr Pap Am Chem Soc Div Fuel Chem 49(1):126–127

    Google Scholar 

  168. Bradford MCJ, Vannice MA (1999) CO2 Reforming of CH4. Catalysis Reviews 41(1):1–42. https://doi.org/10.1081/CR-100101948

    Article  Google Scholar 

  169. Edwards JH (1995) Potential sources of CO2 and the options for its large-scale utilization now and in the future. Catal Today 23:59–66. https://doi.org/10.1016/0920-5861(94)00081-C

    Article  Google Scholar 

  170. Ginsburg JM, Pina J, El Solh T, de Lasa HI (2005) Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models. Ind Eng Chem Res 44(14):4846–4854. https://doi.org/10.1021/ie0496333

    Article  Google Scholar 

  171. Kahle LCS Roussi re T Maier Delgado KH Wasserschaff G Schunk SA Deutschmann O (2013) Methane dry reforming at high temperature and elevated pressure: impact of gas-phase reactions. Industrial & Engineering Chemistry Research 52:34. https://doi.org/10.1021/ie401048w

  172. Li MW, Xu GH, Tian YL, Chen L, Fu HF (2004) Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J Physical Chem A 108:1687–1693. https://doi.org/10.1021/jp037008q

    Article  Google Scholar 

  173. Nagaoka K, Seshan K, Aika K, Lercher JA (2001) Carbon deposition during carbon dioxide reforming of methane-comparison between Pt/Al2O3 and Pt/ZrO2. J Catalysis 197:34–42. https://doi.org/10.1006/jcat.2000.3062

    Article  Google Scholar 

  174. Souza MMVM, Schmal M (2003) Methane conversion to synthesis gas by partial oxidation and CO2 reforming over supported platinum catalysts. Catal Lett 91(1–2):11–17

    Article  Google Scholar 

  175. Wurzel T, Malcus S, Mleczko L (2000) Reaction engineering investigations of CO2 reforming in a fluidized-bed reactor. Chem Eng Sci 55:3955–3966

    Article  Google Scholar 

  176. Kurz G, Teuner S (1990) Calcor process for carbon monoxide production. Erdoel Kohle Erdgas Petrochem 43(5):171–172

    Google Scholar 

  177. Teuner S (1985) Make carbon monoxide from carbon dioxide. Hydrocarbon Process, Int Ed 64(5):106–107

    Google Scholar 

  178. Gunardson H (1998) Industrial Gases in Petrochemical Processing. Marcel Dekker, New York

    Google Scholar 

  179. Rostrup-Nielsen J (2006) 40 years in catalysis. Catalysis Today 111:4–11. Rostrup-Nielsen J, https://doi.org/10.1016/j.cattod.2005.10.016

  180. Olah GA Goeppert A Prakash GKS (2009) Beyond oil and gas: the methanol economy. 2nd ed., Wiley VCH, Weinheim, Germany.

  181. Rostrup-Nielsen J, Christiansen LJ (2011) Concepts in syngas manufacture. Catalytic Series 10 World Scientific:392.

  182. Olah GA, Goeppert A, Prakash GKS, Czaun M (2013) Bi-reforming of methane from any source with steam and carbon dioxide exclusively to Metgas (CO-2H2) for methanol and hydrocarbon synthesis. J Am Chem Soc 135(2):648–650. https://doi.org/10.1021/ja311796n

    Article  Google Scholar 

  183. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32. https://doi.org/10.1016/j.cattod.2006.02.029

    Article  Google Scholar 

  184. Zangouei M Moghaddam AZ Razeghi A Omidkhah MR (2010) Reforming and partial oxidation of CH4 over Ni/Al2O3 catalysts in fixed-bed reactor. International Journal of Chemical Reactor Engineering 8.

  185. Zhou H, Cao Y, Zhao H, Liu H, Wei-Ping P (2008) Investigation of H2O and CO2 reforming and partial oxidation of methane: catalytic effects of coal char and coal ash. Energy Fuels 22:2341–2345

    Article  Google Scholar 

  186. Olah GA Goeppert A Prakash GKS (2018) Methanol and dimethyl ether as fuels and energy carriers

  187. Aouissi A, Al-Othman ZA, Al-Amro A (2010) Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 keggin-type heteropolyanion. Int J Mol Sci 11:1343–1351. https://doi.org/10.3390/ijms11041343

    Article  Google Scholar 

  188. Miranda J, Ferreira H, Vale D, Mota C (2012) Experimental design for CO2 conversion into dimethylcarbonate (DMC) using Bu2SnO at subcritical conditions. Brazilian J Pet Gas 6:93–104. https://doi.org/10.5419/bjpg2012-0008

    Article  Google Scholar 

  189. Araújo O De Medeiros J Alves R (2014) CO2 utilization: a process systems engineering vision. In: V E (ed) CO2 sequestration valorization. pp 35–88

  190. Alper E, Yuksel Orhan O (2017) CO2 utilization: Developments in conversion processes. Petroleum 3:109–126. https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  191. Leitner W Gürtler T (2010) Annual Report 2010,. In: Schüfer J (ed) Leverkusen. pp 32–37

  192. Althaus H Chudacoff M Hischier R et al (2007) Life cycle inventories of chemicals. ecoinvent report No.8, v2.0. Final Rep ecoinvent data … 1–957

  193. Bruckmeier C, Lehenmeier MW, Reichardt R et al (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29:2199–2202. https://doi.org/10.1021/om100060y

    Article  Google Scholar 

  194. Boogaerts IIF, Nolan SP (2010) Carboxylation of C-H bonds using N -heterocyclic carbene gold(I) complexes. J Am Chem Soc 132:8858–8859. https://doi.org/10.1021/ja103429q

    Article  Google Scholar 

  195. Mizuno H, Takaya J, Iwasawa N (2011) Rhodium ( I ) -catalyzed direct carboxylation of Arenes with. J Am Chem Soc 133:1251–1253

    Article  Google Scholar 

  196. Olah GA, Török B, Joschek JP et al (2002) Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system. J Am Chem Soc 124:11379–11391. https://doi.org/10.1021/ja020787o

    Article  Google Scholar 

  197. Wilcox EM, Roberts GW, Spivey JJ (2003) Direct catalytic formation of acetic acid from CO2 and methane. Catal Today 88:83–90. https://doi.org/10.1016/j.cattod.2003.08.007

    Article  Google Scholar 

  198. Zhang L, Cheng J, Ohishi T, Hou Z (2010) Copper-catalyzed direct carboxylation of C-H bonds with carbon dioxide. Angew Chemie - Int Ed 49:8670–8673. https://doi.org/10.1002/anie.201003995

    Article  Google Scholar 

  199. Sanuki S, Matsushita K, Nishiwaki M, Majima H (2000) Preparation of Nd(III) carbonate by precipitation stripping of Nd(III)-loaded VA10. Metall Mater Trans B Process Metall Mater Process Sci 31:5–13. https://doi.org/10.1007/s11663-000-0125-9

    Article  Google Scholar 

  200. Yong Z, Mata V, Rodrigues AE (2001) Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind Eng Chem Res 40:204–209. https://doi.org/10.1021/ie000238w

    Article  Google Scholar 

  201. Xu X, Zhu T (2005) Coupled process of reaction and solvent extraction: I. the reaction between CO2 and SrCl2 coupled with solvent extraction of HCl. Hydrometallurgy 76:11–17. https://doi.org/10.1016/j.hydromet.2004.06.007

    Article  Google Scholar 

  202. Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49:10765–10780. https://doi.org/10.1021/ic101800d

    Article  Google Scholar 

  203. Liew FM Martin ME Tappel RC et al (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:.https://doi.org/10.3389/fmicb.2016.00694

  204. Liu Z, Wang K, Chen Y et al (2020) Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 3:274–288. https://doi.org/10.1038/s41929-019-0421-5

    Article  Google Scholar 

  205. Cummings J (2013) https://www.energy.gov/sites/prod/files/2016/05/f31/ibr_cummings_5241.pdf. In: IBR Platf. Peer Rev.

  206. Fitoplancton M (2020) http://www.fitoplanctonmarino.com/en/human-nutrition.html. In: Hum. Nutr.

  207. Lee U, Hawkins TR, Yoo E, Wang M, Huang Z, Tao L (2021) Using waste CO2 from corn ethanol biorefineries for additional ethanol production: life-cycle analysis. Biofuels, Bioproducts, Biorefining 15:468–480

    Article  Google Scholar 

  208. Mohr SH, Wang J, Ellem G et al (2015) Projection of world fossil fuels by country. Fuel 141:120–135. https://doi.org/10.1016/j.fuel.2014.10.030

    Article  Google Scholar 

  209. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709. https://doi.org/10.1073/pnas.0812721106

    Article  Google Scholar 

  210. Wright LA, Kemp S, Williams I (2011) “Carbon footprinting”: towards a universally accepted definition. Carbon Manag 2:61–72. https://doi.org/10.4155/cmt.10.39

    Article  Google Scholar 

  211. Maroneze MM, Siqueira SF, Vendruscolo RG et al (2016) The role of photoperiods on photobioreactors – a potential strategy to reduce costs. Bioresour Technol 219:493–499. https://doi.org/10.1016/j.biortech.2016.08.003

    Article  Google Scholar 

  212. Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustain 4:597–603. https://doi.org/10.1016/j.cosust.2012.06.006

    Article  Google Scholar 

  213. Tuller HL (2017) Solar to fuels conversion technologies: a perspective. Mater Renew Sustain Energy 6:1–16. https://doi.org/10.1007/s40243-017-0088-2

    Article  Google Scholar 

  214. Boyle NR, Morgan JA (2011) Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab Eng 13:150–158. https://doi.org/10.1016/j.ymben.2011.01.005

    Article  Google Scholar 

  215. Kothari R Ahmad S Pathak V V. et al (2019) Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Convers Biorefinery 2.https://doi.org/10.1007/s13399-019-00533-y

  216. Andrade DS, Telles TS, Leite Castro GH (2020) The Brazilian microalgae production chain and alternatives for its consolidation. J Clean Prod 250:119526. https://doi.org/10.1016/j.jclepro.2019.119526

    Article  Google Scholar 

  217. Severo IA, Siqueira SF, Deprá MC et al (2019) Biodiesel facilities: what can we address to make biorefineries commercially competitive? Renew Sustain Energy Rev 112:686–705. https://doi.org/10.1016/j.rser.2019.06.020

    Article  Google Scholar 

  218. Gnansounou E, Vaskan P, Pachón ER (2015) Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresour Technol 196:364–375. https://doi.org/10.1016/j.biortech.2015.07.072

    Article  Google Scholar 

  219. Müller LJ Kätelhön A Bachmann M Zimmermann A Sternberg A Bardow A (2020). A guideline for life cycle assessment of carbon capture and utilization. Front Ener Res, 8. DOI. https://doi.org/10.3389/fenrg.2020.00015

  220. Daigle R Desrochers M (2009) Carbonic anhydrase having increased stability under high temperature conditions. U.S. Patent 7521217.

  221. International Energy Agency (2012) CO2 Emissions from Fuel Combustion

  222. Kočí K, Matějů K, Obalová L et al (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B Environ 96:239–244. https://doi.org/10.1016/j.apcatb.2010.02.030

    Article  Google Scholar 

  223. O’Connor AM, Ross JRH (1998) The effect of O2 addition on the carbon dioxide reforming of methane over Pt/ZrO2 catalysts. Catal Today 46(2–3):203–210. https://doi.org/10.1016/S0920-5861(98)00342-3

    Article  Google Scholar 

  224. Teuner S et al. (2001) The Calcor standard and Calcor economy processes, in Oil and Gas. European Magazine:44–46.

  225. https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions. Accessed 14 November 2021

  226. https://www.weforum.org/agenda/2020/07/climate-change-increased-carbon-dioxide-emissions-scientists. Accessed 14 November 2021

  227. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 14 November 2021

  228. http://volcanoes.usgs.gov/hazards/gas/climate.php. Accessed 14 November 2021

  229. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf. Accessed 14 November 2021

  230. https://www.wri.org/resources/data-visualizations/world-greenhouse-gas-emissions-2016. Accessed 14 November 2021

  231. http://www.algenol.com/ direct-to-ethanol/the-technology. Accessed 14 November 2021

  232. https://sites.google.com/view/lidstrom-lab/research/formolase-enzyme-engineering?authuser=0

  233. (2020a) Cellana, renewable fuels. http://cellana.com/products/renew-fuel/. Accessed 14 November 2021

  234. (2020b) Dyecoo technology, Dyeox. http://www.dyecoo.com/the-dyeox/. Accessed 14 November 2021

  235. (2020c) CO2 solutions, enzyme. https://co2solutions.com/en/enzyme/. Accessed 14 November 2021

  236. (2019) CISION PR Newswire, News. https://www.prnewswire.com/news-releases/co2-solutions-successfully-completes-commissioning-of-it-first-commercial-carbon-capture-unit-300839558.html. Accessed 14 November 2021

Download references

Acknowledgements

AKC gratefully acknowledges the financial support from FAPESP (Project number: 2020/12559-6) and CNPq for scientific productivity program (Process number: 309214/2021-1).

Author information

Authors and Affiliations

Authors

Contributions

AKC and RG had the idea for the article, AM and YT performed literature search and data analysis, RG and AM drafted the article, and AKC and YT critically revised the work.

Corresponding author

Correspondence to Anuj Kumar Chandel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Mishra, A., Thirupathaiah, Y. et al. Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects. Biomass Conv. Bioref. 14, 3007–3030 (2024). https://doi.org/10.1007/s13399-022-02552-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02552-8

Keywords

Navigation