Skip to main content

Advertisement

Log in

Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of −20.4 ‰ and by a mean CO2 flux of 88.1 g m−2 day−1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m−2 day−1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m−2 s−1; (3) the soil Hg flux was lower, ranging from −2.5 to 18.7 n g m−2 h−1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m−2 h−1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year−1 and 688.19 g year−1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Annunziatellis, A., Beaubien, S. E., Bigi, S., Ciotoli, G., Coltella, M., & Lombardi, S. (2008). Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage. International Journal of Greenhouse Gas Control, 2(3), 353–372.

    Article  CAS  Google Scholar 

  • Bagnato, E., Barra, M., Cardellini, C., Chiodini, G., Parello, F., & Sprovieri, M. (2014). First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. Journal of Volcanology and Geothermal Research, 289, 26–40.

    Article  CAS  Google Scholar 

  • Baubron, J. C., Rigo, A., & Toutain, J. P. (2002). Soil gas profiles as a tool to characterize active tectonic areas: The Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters, 196, 69–81.

    Article  CAS  Google Scholar 

  • Baxter, P. J., Baubron, J., & Coutinho, R. (1999). Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. Journal of Volcanology and Geothermal Research, 92, 95–106.

    Article  CAS  Google Scholar 

  • Beaubien, S. E., Ciotoli, G., & Lombardi, S. (2003). Carbon dioxide and radon gas hazard in the Alban Hills area (central Italy). Journal of Volcanology and Geothermal Research, 123(1–2), 63–80.

    Article  CAS  Google Scholar 

  • Bochiolo, M., Verdoya, M., Chiozzi, P., & Pasquale, V. (2012). Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment. Journal of Applied Geophysics, 83, 100–106.

    Article  Google Scholar 

  • Chen, J., Rahman, N. M., & Atiya, I. A. (2010). Radon exhalation from building materials for decorative use. Journal of Environmental Radioactivity, 101, 317–322.

    Article  CAS  Google Scholar 

  • Chen, J., Yang, X., Dang, J., He, C., Zhou, Y., & Ma, S. (2011). Internal structure and permeability of Wenchuan earthquake fault. Chinese Journal of Geophysics, 54(7), 1805–1816 (in Chinese).

  • Chernyago, B. P., Nepomnyashchikh, A. I., & Kalinovskii, G. I. (2008). Soil-to-dwelling radon isotope ratio in the Baikal region. Russian Geology and Geophysics, 49(12), 971–977.

    Article  Google Scholar 

  • Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., & Schmidt, A. (2008). Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth and Planetary Science Letters, 274(3–4), 372–379.

    Article  CAS  Google Scholar 

  • Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13, 543–552.

    Article  CAS  Google Scholar 

  • Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Minopoli, C., & Vilardo, G. (2010). Non-volcanic CO2 Earth degassing: Case of Mefite d’Ansanto (southern Apennines), Italy. Geophysical Research Letters, 37, L11303.

    Article  Google Scholar 

  • Cinelli, G., Tositti, L., Capaccioni, B., Brattich, E., & Mostacci, D. (2015). Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environmental Geochemistry and Health, 37, 305–319.

  • Ciotoli, G., Guerra, M., Lombardi, S., & Vittori, E. (1998). Soil gas survey for tracing seismogenic faults: A case-study in the Fucino basin (Central Italy). Journal of Geophysical Research, 103, 23781–23794.

    Article  CAS  Google Scholar 

  • Collignan, B., Lorkowski, C., & Améon, R. (2012). Development of a methodology to characterize radon entry in dwellings. Building and Environment, 57, 176–183.

    Article  Google Scholar 

  • Deng, B., Liu, S., Jansa, L., Cao, J., Cheng, Y., Li, Z., & Liu, S. (2012). Sedimentary record of Late Triassic transpressional tectonics of the Longmenshan thrust belt, SW China. Journal of Asian Earth Sciences, 48, 43–55.

    Article  Google Scholar 

  • Denton, G. R. W., & Namazi, S. (2013). Indoor radon levels and lung cancer incidence on Guam. Procedia Environmental Sciences, 18, 157–166.

    Article  CAS  Google Scholar 

  • Dickman, M. D., Leung, K. M. C., & Koo, L. C. L. (1999). Mercury in human hair and fish: Is there a Hong Kong male subfertility connection? Marine Pollution Bulletin, 39, 352–356.

    Article  CAS  Google Scholar 

  • Dickman, M. D., Leung, C. K., & Leong, M. K. (1998). Hong Kong male subfertility links to mercury in human hair and fish. Science of the Total Environment, 214, 165–174.

    Article  CAS  Google Scholar 

  • Doğan, T., Sumino, H., Nagao, K., Notsu, K., Tuncer, M. K., & Celik, C. (2009). Adjacent releases of mantle helium and soil CO2 from active faults: Observations from the Marmara region of the North Anatolian Fault zone, Turkey. Geochemistry, Geophysics, Geosystems, 10, Q11009.

    Google Scholar 

  • Du, P., Chen, J., Chen, C., Liu, Y., Liu, J., Wang, H., & Zhang, X. (2012). Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake. Science of the Total Environment, 419, 16–24.

    Article  CAS  Google Scholar 

  • Ebinghaus, R., Kock, H. H., Coggins, A. M., Spain, T. G., Jennings, S. G., & Temme, C. (2002). Long-term measurements of atmospheric mercury at Mace Head, Irish West Coast, between 1995 and 2001. Atmospheric Environment, 36, 5267–5276.

    Article  CAS  Google Scholar 

  • Ernst, W. G. (2012). Overview of naturally occurring Earth materials and human health concerns. Journal of Asian Earth Sciences, 59(1), 108–126.

    Article  Google Scholar 

  • Evans, J. P., Forster, G. B., & Goddard, J. V. (1997). Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19, 1393–1404.

    Article  Google Scholar 

  • Evans, W. C., Sorey, M. L., Kennedy, B. M., Stonestrom, D. A., Rogie, J. D., & Shuster, D. L. (2001). High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation. Chemical Geology, 177, 15–29.

    Article  CAS  Google Scholar 

  • Fang, F. M., Wang, Q. C., & Li, J. F. (2004). Urban environmental mercury in Changchun, a metropolitan city in northeastern China: Source, cycle, and fate. Science of the Total Environment, 330, 159–170.

    Article  CAS  Google Scholar 

  • Faulkner, D. R., Mitchell, T. M., Jensen, E., & Cembrano, J. (2011). Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research, 16, B05403.

    Google Scholar 

  • Feng, X., Tang, S., Shang, L., Yan, H., Sommar, J., & Lindqvist, O. (2003). Total gaseous mercury in the atmosphere of Guiyang, PR China. Science of the Total Environment, 304(1–3), 61–72.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1–7.

    Article  CAS  Google Scholar 

  • Forbrich, I., Kutzbach, L., Hormann, A., & Wilmking, M. (2010). A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands. Soil Biology and Biochemistry, 42(3), 507–515.

    Article  CAS  Google Scholar 

  • Francesco, F. D., Ferrara, R., & Mazzolai, B. (1998). Two ways of using a chamber for mercury flux measurement—A simple mathematical approach. Science of the Total Environment, 213, 33–41.

    Article  Google Scholar 

  • GB 50325-2001. (2006). Code for indoor environmental pollution control of civil building engineering. Beijing: China Planning Press. (in Chinese)

  • Gerlach, T. M., Doukas, M. P., McGee, K. A., & Kessler, R. (2001). Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995–1999. Chemical Geology, 177, 101–116.

    Article  CAS  Google Scholar 

  • Giammanco, S., Immè, G., Mangano, G., Morelli, D., & Neri, M. (2009). Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy). Applied Radiation and Isotopes, 67(1), 178–185.

    Article  CAS  Google Scholar 

  • Gillis, A., & Miller, D. R. (2000). Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber. Science of the Total Environment, 260, 181–189.

    Article  CAS  Google Scholar 

  • Gong, Z., Li, H., Lao, C., Tang, L., & Luo, L. (2015). Real-time drilling mud gas monitoring records seismic damage zone from the 2008 M w 7.9 Wenchuan earthquake. Tectonophysics, 639, 109–117.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Sexauer Lindberg, S., & Marsik, F. (1999). The Nevada STORMS project: Measurement of mercury emissions from naturally enriched landscapes. Journal of Geophysical Research: Atmospheres, 104(D17), 21831–21844.

    Article  CAS  Google Scholar 

  • Ielsch, G., Cushing, M. E., Combes, P., & Cuney, M. (2010). Mapping of the geogenic radon potential in France to improve radon risk management: Methodology and first application to region Bourgogne. Journal of Environmental Radioactivity, 101, 813–820.

    Article  CAS  Google Scholar 

  • Ip, P., Wong, V., Ho, M., Lee, J., & Wong, W. (2004). Mercury exposure in children with autistic spectrum disorder: Case–control study. Journal of Child Neurology, 19, 431–434.

    Google Scholar 

  • Je, H., Kang, C., Choi, J., Lee, J., & Chon, H. (2007). Assessment of soil and soil-gas radon activity using active and passive detecting methods in Korea. Environmental Geochemistry and Health, 29(4), 295–301.

    Article  CAS  Google Scholar 

  • Jiang, C. M., Yu, G. R., Cao, G. M., Li, Y. N., Zhang, S. C., & Fang, H. J. (2010). CO2 flux estimation by different regression methods from an alpine meadow on the Qinghai–Tibetan Plateau. Advances in Atmospheric Sciences, 27(6), 1372–1379.

    Article  CAS  Google Scholar 

  • Jin, Y., Wu, Z., Shen, C., Wei, J., & Zhu, H. (1989). Earthquake prediction through the observation and measurement of mercury content variation in water. Journal of Geochemical Exploration, 33, 195–202.

    Article  CAS  Google Scholar 

  • Kämpf, H., Bräuer, K., Schumann, J., Hahne, K., & Strauch, G. (2013). CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): Characteristic (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions. Chemical Geology, 339, 71–83.

    Article  Google Scholar 

  • Kerrick, D. M. (2001). Present and past non anthropogenic CO2 degassing from the solid Earth. Reviews of Geophysics, 39(4), 565–585.

    Article  CAS  Google Scholar 

  • Kitto, M. E., & Green, J. G. (2008). Mapping the indoor radon potential in New York at the township level. Atmospheric Environment, 42(34), 8007–8014.

    Article  CAS  Google Scholar 

  • Krewski, D., Lubin, J. H., Zielinski, J. M., Alavanja, M., Catalan, V. S., Field, R. W., et al. (2005). Residential radon and risk of lung cancer: A combined analysis of 7 North American case–control studies. Epidemiology, 16, 137–145.

    Article  Google Scholar 

  • Krewski, D., Lubin, J. H., Zienski, J. M., Alavanja, M., Catalan, V. S., Field, R. W., et al. (2006). A combined analysis of North American case-control studies of residential radon and lung cancer. Journal of Toxicology and Environmental Health, Part A, 69, 533–597.

    Article  CAS  Google Scholar 

  • Lehmann, B. E., Ihly, B., Salzmann, S., Conen, F., & Simon, E. (2004). An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil. Radiation Measurements, 38, 43–50.

    Article  CAS  Google Scholar 

  • Lewicki, J. L., & Brantley, S. L. (2000). CO2 degassing along the San Andreas fault, Parkfield, California. Geophysical Research Letters, 27, 5–8.

    Article  CAS  Google Scholar 

  • Lewicki, J. L., Evans, W. C., Hilley, G. E., Sorey, M. L., Rogie, J. D., & Brantley, S. L. (2003). Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. ournal of Geophysical Research, 108(B4), 2187.

    Google Scholar 

  • Li, Z., Liu, S., Chen, H., Sun, D., Lin, J., & Tang, C. (2011). Structural superimposition and conjunction and its effects on hydrocarbon accumulation in the Western Sichuan Depression. Petroleum exploration and development, 38(5), 538–551.

    Article  Google Scholar 

  • Li, Z., Tao, M., Li, L., Wang, Z., Du, L., & Zhang, M. (2007). Determination of isotope composition of dissolved inorganic carbon by gas-chromatography conventional isotope-ratio mass spectrometry. Chinese Journal of Analytical Chemistry, 35(10), 1455–1458 (in Chinese with English abstract).

  • Li, C., Wei, Z., Ye, J., Han, Y., & Zheng, W. (2010). Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan M w 7.9 earthquake, China. Tectonophysics, 491(1–4), 35–58.

    Article  Google Scholar 

  • Li, H., Xu, Z., Niu, Y., Kong, G., Huang, Y., Wang, H., et al. (2014). Structural and physical property characterization in the Wenchuan Earthquake Fault Scientific Drilling Project-Hole 1 (WFSD-1). Tectonophysics, 619–620, 86–100.

    Article  Google Scholar 

  • Lin, A., Ren, Z., Jia, D., & Wu, X. (2009). Co-seismic thrusting rupture and slip distribution produced by the 2008 M w 7.9 Wenchuan earthquake, China. Tectonophysics, 471(3–4), 203–215.

    Article  Google Scholar 

  • Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., et al. (1991). Mercury in the Swedish environment: Recent research on causes consequences and corrective methods. Water, Air, and Soil Pollution, 55, 23–32.

    Article  Google Scholar 

  • Lombardi, S., & Voltattorni, N. (2010). Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Applied Geochemistry, 25(8), 1206–1220.

    Article  CAS  Google Scholar 

  • Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacement: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31, 802–816.

    Article  Google Scholar 

  • Mörner, N., & Etiope, G. (2002). Carbon degassing from the lithosphere. Global and Planetary Change, 33, 185–203.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2, 109–118.

    Google Scholar 

  • Nakano, T., Sawamoto, T., Morishita, T., Inoue, G., & Hatano, R. (2004). A comparison of regression methods for estimating soil–atmosphere diffusion gas fluxes by a closed-chamber technique. Soil Biology and Biochemistry, 36(1), 107–113.

    Article  CAS  Google Scholar 

  • Nay, A. M., Mattson, K. G., & Bormann, B. T. (1994). Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology, 75, 2460–2463.

    Article  Google Scholar 

  • Padilla, G. D., Hernández, P. A., Padrón, E., Barrancos, J., Pérez, N. M., Melián, G., et al. (2013). Soil gas radon emissions and volcanic activity at El Hierro (Canary Islands): The 2011–2012 submarine eruption. Geochemistry, Geophysics, Geosystems, 14, 432–447.

  • Perrier, F., Richon, P., Byrdina, S., France-Lanord, C., Rajaure, S., Koirala, B. P., et al. (2009). A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth and Planetary Science Letters, 278, 198–207.

    Article  CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., et al. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964.

    Article  CAS  Google Scholar 

  • Richon, P., Perrier, F., Sabroux, J. C., Trique, M., Ferry, C., & Pili, E. (2005). Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel. Journal of Environmental Radioactivity, 78, 179–198.

    Article  CAS  Google Scholar 

  • Rochette, P., & Erickson-Hamel, N. S. (2008). Chamber measurements of soil nitrous oxide flux: Are absolute values reliable? Soil Science Society of America Journal, 72, 331–342.

    Article  CAS  Google Scholar 

  • Schlüter, K. (2000). Review: Evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 39, 249–271.

    Article  Google Scholar 

  • Shang, Y. J., Liu, J. Q., Liu, D. A., Zhang, L. Q., Xia, Y. Q., & Lei, T. Z. (2014). Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the 2008 Wenchuan earthquake, China. Geomorphology, 231, 162–168.

    Article  Google Scholar 

  • Sibson, R. H. (2003). Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93, 1169–1178.

    Article  Google Scholar 

  • Song, X., & Van Heyst, B. (2005). Volatilization of mercury from soils in response to simulated precipitation. Atmospheric Environment, 39, 7494–7505.

    Article  CAS  Google Scholar 

  • Tan, Y., & Xiao, D. (2013). Measuring radon exhalation rate in two cycles avoiding the effects of back-diffusion and chamber leakage. Environmental Monitoring and Assessment, 185, 8759–8765.

    Article  CAS  Google Scholar 

  • Tang, L., Luo, L., Lao, C., Wang, G., Wang, J., & Huang, Yao. (2014). Real time fluid analysis during drilling of the Wenchuan Earthquake Fault Scientific Drilling Project and its responding features. Tectonophysics, 619–620, 70–78.

    Article  Google Scholar 

  • Thomas, D. (1988). Geochemical precursors to seismic activity. Pure and Applied Geophysics, 126(2), 241–266.

    Article  CAS  Google Scholar 

  • Toutain, J. P., & Baubron, J. C. (1999). Gas geochemistry and seismotectonics: A review. Tectonophysics, 304, 1–27.

    Article  CAS  Google Scholar 

  • Tuccimei, P., & Soligo, M. (2008). Correcting for CO2 interference in soil radon flux measurements. Radiation Measurements, 43, 102–105.

    Article  CAS  Google Scholar 

  • Voltattorni, N., Sciarra, A., Caramanna, G., Cinti, D., Pizzino, L., & Quattrocchi, F. (2009). Gas geochemistry of natural analogues for the studies of geological CO2 sequestration. Applied Geochemistry, 24(7), 1339–1346.

    Article  CAS  Google Scholar 

  • Wagner, S. W., Reicosky, D. C., & Alessi, R. S. (1997). Regression models for calculating gas fluxes measured with a closed chamber. Agronomy Journal, 89(2), 279–284.

    Article  CAS  Google Scholar 

  • Wang, Z., Fukao, Y., & Pei, S. (2009). Structural control of rupturing of the M w 7.9 2008 Wenchuan Earthquake, China. Earth and Planetary Science Letters, 279(1–2), 131–138.

    Article  CAS  Google Scholar 

  • Wang, D. Y., He, L., Shi, X. J., Wei, S. Q., & Feng, X. B. (2006). Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere, 64, 1845–1854.

    Article  CAS  Google Scholar 

  • Wen, X., Ma, S., Xu, X., & He, Y. (2008). Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan–Yunnan faulted-block southwestern China. Physics of the Earth and Planetary Interiors, 168, 16–36.

    Article  Google Scholar 

  • Xie, X., Chen, Z., Zhang, L., Feng, J., Ye, J., & Zhu, Y. (2008). The maps of 76 elements in SW China. Beijing: Geological Publishing House.

    Google Scholar 

  • Zhang, L., Liu, Y., Guo, L., Yang, D., Fang, Z., Chen, T., et al. (2014). Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 619–620, 79–85.

    Article  Google Scholar 

  • Zhang, Y., Shi, J., Sun, P., Yang, W., Yao, X., Zhang, C., & Xiong, T. (2013). Surface ruptures induced by the Wenchuan earthquake: Their influence widths and safety distances for construction sites. Engineering Geology, 166, 245–254.

    Article  Google Scholar 

  • Zheng, G., Xu, S., Liang, S., Shi, P., & Zhao, J. (2012). Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China. Chemical Geology, 339, 187–193.

    Article  Google Scholar 

  • Zhou, Y., Ceng, K., & Shi, Z. (2013). Surveys on Radon concentration and distribution in soil and air in Aba, Sichuan. Geoscience, 27(4), 993–998 (in Chinese with English abstract).

  • Zhou, X., Wang. W., Chen, Z., Yi, L., Liu, L., Xie, C., et al. (2015). Hot spring gas geochemistry in Western Sichuan Province, China after the Wenchuan MS 8.0 earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 26(4), 361–373.

  • Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Y., Yang, L., et al. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan M S 8.0 earthquake, southwestern China. Geochemical Transactions, 11, 1–10.

  • Zhou, X., Du, J., Wang, C., Cao, Z., Yi, L., & Liu, L. (2007). Geochemical Characteristics of Radon and Mercury in Soil Gas in Lhasa, Tibet, China. Environmental Science, 28(3), 659–663.

    CAS  Google Scholar 

  • Zhuo, W., Guo, Q., Chen, B., & Cheng, G. (2008). Estimating the amount and distribution of radon flux density from the soil surface in China. Journal of Environmental Radioactivity, 99(7), 1143–1148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Seismological Bureau of Sichuan Province and Prof. Fang Du for help in the field work. We sincerely thank the editor and reviewer for their valuable comments and grammar edits in improving the manuscript. This research was jointly supported by the national youth nature fund (41303076, 41403099, 41402298) and the National Science and Technology Support Program (CEA Key Laboratory of Earthquake Prediction (2013IES010102, 2013IES0205, 2014IES0402, 2010IES0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, Z. & Cui, Y. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China. Environ Geochem Health 38, 1067–1082 (2016). https://doi.org/10.1007/s10653-015-9773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9773-1

Keywords

Navigation