Skip to main content
Log in

Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Third-generation biofuels are gaining commercial interest because of the rapid growth rate, high productivity of nutrients, and the carbon dioxide sequestration ability of the feedstock, algae. But the selection of algae, cultivation method, and pretreatment techniques remain challenging. The present work describes the high suitability of brown seaweed as a promising feedstock for the production of bioethanol. Sargassum cinereum is a carbohydrate-rich and fast-growing brown seaweed in all marine environments and abundantly available in Gulf of Mannar, India. Proximate, ultimate, and biochemical analysis has demonstrated the potential carbohydrates in the brown seaweed composition. Preliminary studies on S. cinereum revealed that the H2SO4-assisted hydrolysis had produced more fermentable sugars than the tested. A statistical optimization method with 16 runs was employed to optimize the H2SO4 loading concentration (% w/v), residence time (min), and incubation temperature (°C) for the enhancement of fermentable sugars from the biomass. Optimization results have shown a 133% increase in reducing sugars yield. Furthermore, the obtained sugars were fermented to ethanol at a yield of 0.465 ± 0.024 g ethanol/reducing sugars using Saccharomyces cerevisiae MTCC170. The observed high ethanol yield from seaweed sugars was closer to the theoretical yield based on glucose as a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Article  Google Scholar 

  2. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18(1):27–46

    Article  Google Scholar 

  3. Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36(1):84–89

    Article  Google Scholar 

  4. Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7(11):7194–7222

    Article  Google Scholar 

  5. Borines MG, de Leon RL, Cuello JLJB (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29

    Article  Google Scholar 

  6. Meinita MDN, Hong Y-K, Jeong G-T (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35(1–2):123–128

    Article  Google Scholar 

  7. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym Microb Technol 18(5):312–331

    Article  Google Scholar 

  8. Jang J-S, Cho Y, Jeong G-T, Kim S-K (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35(1–2):11–18

    Article  Google Scholar 

  9. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46(11):2111–2116

    Article  Google Scholar 

  10. Adams JM, Gallagher JA, Donnison ISJJoaP (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21 (5):569

  11. Horn S, Aasen I, stgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25 (5):249–254

  12. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, Eswaran K, Ghosh PK (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103(1):180–185

    Article  Google Scholar 

  13. Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469

    Article  Google Scholar 

  14. Wang X, Liu X, Wang G (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. J Integr Plant Biol 53(3):246–252

    Article  Google Scholar 

  15. Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS, Shin MK Production of polysaccharides and corresponding sugars from red seaweed. In: Advanced Materials Research, 2010. Trans Tech Publ, pp 463–466

  16. Isa A, Mishima Y, Takimura O, Minowa TJ (2009) Preliminary study on ethanol production by using macro green algae. J Jpn Inst Energy 88(10):912–917

    Article  Google Scholar 

  17. Yeon J-H, Seo H-B, Oh S-H, Choi W-S, Kang D-H, Lee H-Y, Jung K-H (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J 25:283–288

    Google Scholar 

  18. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. J Molecules 23(11):2937

    Article  Google Scholar 

  19. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim Y-G, Yang Y-H (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724

    Article  Google Scholar 

  20. Das D, Selvaraj R, Bhat MRJB, Biotechnology A (2019) Optimization of inulinase production by a newly isolated strain Aspergillus flavus var. flavus by solid state fermentation of Saccharum arundinaceum. Biocatal Agric Biotechnol 22:101363

    Article  Google Scholar 

  21. Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606

    Article  Google Scholar 

  22. Greetham D, Zaky A, Makanjuola O, Du C (2018) A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Current Opinion in Green and Sustainable Chemistry 14:53–59

    Article  Google Scholar 

  23. Soleymani M, Rosentrater KA (2017) Techno-economic analysis of biofuel production from macroalgae (seaweed). Bioengineering 4(4):92

    Article  Google Scholar 

  24. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17(1):36

    Article  Google Scholar 

  25. Kumar KK, Prasad MK, Baburao G, Sudhakar M, Sivajyothi J, Sathish T, Murthy V (2018) A fortunate marine algae biomass, Sargassum cinereum for removal of Pb (II): studies on thermodynamics, kinetics and characterization. Desalination Water Treatment 116:179–186

    Article  Google Scholar 

  26. Cunniff PJAoOACteA, Virginia, USA (1995) Official methods of analysis

  27. Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049

    Article  Google Scholar 

  28. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053

    Article  Google Scholar 

  29. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  30. Chen Q-H, Li W-Q, Zhang S-J, Chen Z-F, Peng H-P, Zheng S-W (2003) Analysis of polysaccharide composition of marine microalgae by gas chromatography. Journal-Xiamen Univ Nat Sci 42(4):498–502

    Google Scholar 

  31. Mogoşanu GD, Grumezescu AM, Mihaiescu D, Istrati D, Mogoşanu DE, Buteica S (2011) Identification of sugars from Silene albae herba using GC–MS technique. UPB Sci Bull, Series B 73:101–108

    Google Scholar 

  32. Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW (2012) Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121

    Article  Google Scholar 

  33. Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7(1):14

    Article  Google Scholar 

  34. Betz JM, JJocs NJG (1987) Determination of ethanol in alcoholic beverages by liquid chromatography using the UV detector. J Chromatogr Sci 25(9):391–394

    Article  Google Scholar 

  35. Robledo D, Freile Pelegrin Y (1997) Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot Mar 40(4):301–306

    Google Scholar 

  36. Marinho-Soriano E, Fonseca P, Carneiro M, Moreira W (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97(18):2402–2406

    Article  Google Scholar 

  37. Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21(1):75–80

    Article  Google Scholar 

  38. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides

  39. van der Wal H, Sperber BL, Houweling-Tan B, Bakker RR, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. J Bioresource Technol 128:431–437

    Article  Google Scholar 

  40. Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161(1–8):41–52

    Article  Google Scholar 

  41. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24(3–4):151–159

    Article  Google Scholar 

  42. Yoza BA, Masutani EM (2013) The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environ Technol 34(13–14):1859–1867

    Article  Google Scholar 

  43. Lee S-M, Kim J-H, Cho H-Y, Joo H, Lee J-H (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. Appl Chem Eng 20(5):517–521

    Google Scholar 

  44. Lee HY, Lee SE, Jung KH, Yeon JH, Choi WY (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21(3):323–331

    Article  Google Scholar 

  45. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313

    Article  Google Scholar 

  46. Park J-H, Hong J-Y, Jang HC, Oh SG, Kim S-H, Yoon J-J, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    Article  Google Scholar 

  47. Ji S-Q, Wang B, Lu M, Li F-L (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9(1):81

    Article  Google Scholar 

  48. Nguyen TH, Ra CH, Sunwoo I, Jeong G-T, Kim S-K (2017) Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng 40(4):529–536

    Article  Google Scholar 

  49. Lamb JJ, Sarker S, Hjelme DR, Lien KM (2018) Fermentative bioethanol production using enzymatically hydrolysed Saccharina latissima. Adv Microbiol 8(05):378

    Article  Google Scholar 

  50. Sunwoo IY, Kwon JE, Nguyen TH, Ra CH, Jeong G-T, Kim S-K (2017) Bioethanol production using waste seaweed obtained from Gwangalli beach, Busan, Korea by co-culture of yeasts with adaptive evolution. Appl Biochem Biotechnol 183(3):966–979

    Article  Google Scholar 

  51. Soliman R, Younis S, El-Gendy NS, Mostafa S, El-Temtamy S, Hashim A (2018) Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. J Appl Microbiol 125(2):422–440

    Article  Google Scholar 

Download references

Acknowledgements

LB and KD are thankful to the Director, CSIR-IICT Hyderabad. KD gratefully acknowledges the UGC for post doctoral fellowship. The manuscript communication number through CSIR-IICT is IICT/Pubs./2021/005

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sathish Thadikamala or Kiran Babu Uppuluri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadimpati, K.K., Thadikamala, S., Devarapalli, K. et al. Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol. Biomass Conv. Bioref. 13, 1831–1841 (2023). https://doi.org/10.1007/s13399-020-01270-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01270-3

Keywords

Navigation