Skip to main content

Advertisement

Log in

Comparative view on microbial consumption of agro-based lignocellulosic waste biomass in sustainable production of cellulases

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the utilization of lignocellulosic biomass, the hydrolysis of lignocellulose is playing a vital role because it decides the amount of glucose that is used for fermentation. Lignin present in lignocellulosic biomass is a major barrier to the effective utilization of their carbohydrate content. Pretreatment of biomass is an essential processing step for making efficient lignocellulose utilization. Polymeric sugars like cellulose and hemicellulose are converted to their corresponding monomers by chemical, physicochemical, and biological methods. Alkaline pretreatment is believed to cleave hydrolyzable linkages in lignin and glycosidic bonds of polysaccharides, which causes a reduction in the degree of polymerization, swelling of the fibers, as well as disruption of the lignin structure. The present paper describes the comparative view on the potential ability of untreated and alkali-treated wheat straw, bagasse, and groundnut shell waste in cellulase production. Application of XRD and FTIR analysis has also been used to compare the potentiality of lignocellulosic biomass. Higher FPase (1.29 ± 0.05 IU/mL) and CMCase (8.64 ± 0.15 IIU/mL) were observed with alkali-treated groundnut shell waste by Aspergillus strain. Alkali-treated raw materials were found quite effective for cellulase production as compared to untreated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balat M, Balat HOZC (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  Google Scholar 

  2. Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 18

  3. Borsa CP, Palmarola-Adrados B, Galbe M, Zacchi G, Melzoch K, Rychtera M (2004) Processing of wheat bran to sugars. J Food Eng 61(4):561–565

    Article  Google Scholar 

  4. Canilha L, Chandel AK (2012) Thais Suzane dos Santos MilessiTSDS., Felipe Antônio Fernandes Antunes FAF., Freitas WLDC, Felipe MDGA., da Silva SS., Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation, 15

  5. Chen Y, Stevens MA, Zhu Y, Holmes J (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(1):8

    Article  Google Scholar 

  6. Cheol Y, Jun P, Kim S (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47(1):31–35

    Article  Google Scholar 

  7. del Río JC, Rencoret J, Prinsen P, Ángel T, Martínez AT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed byanalytical pyrolysis, 2d-nmr, and reductive cleavage methods. J Agric Food Chem 60:5922–5935

    Article  Google Scholar 

  8. Deshavath NN, Shahoo SK, Panda MM, Mahanta S, Goutham DSN, Goud VV, Dasu VV, Jetty A (2018) The cost-effective stirred tank reactor for cellulase production from alkaline-pretreated agriculture waste biomass. In: Ghosh S (ed) Utilization and Management of Bioresources. Springer, Singapore

    Google Scholar 

  9. Dey R, Pal KK, Chauhan SM, Mishra JB (2002) Groundnut shell decomposition potential of some cellulolytic microorganisms. Indian J Microbiol 42(2):165–167

    Google Scholar 

  10. Domingues FC, Queinoz JA, Cabral JMS, Fonseca LP (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei RUT C 30. Enzym Microb Technol 26(5–6):394–401

    Article  Google Scholar 

  11. Eitner V, Lindorfer J (2016) Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renew Energy 8(1):193–202

    Article  Google Scholar 

  12. Gadhe A, Mudliar S, Pandey R, Elumalai S, Satpute D (2011) Statistical optimization of process parameters for the production of vanillic acid by solid-state fermentation of groundnut shell waste using response surface methodology. J Chem Technol Biotechnol 86:1535–1541

    Article  Google Scholar 

  13. Gallegos D, Wedwitschka H, Moeller L, Zehnsdorf A, Stinner W (2017) Effect of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw. Bioresour Technol 245(A):216–224

    Article  Google Scholar 

  14. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  Google Scholar 

  15. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: A review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  16. Guldhe A, Singh B, Renuka N, Singh P, Misra R, Bux F (2017) Bioenergy: a sustainable approach for cleaner environment. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 47–62

    Chapter  Google Scholar 

  17. Guo GL, Hsu DC, Chen WH, Chen WH, Hwong WS (2009) Charecterisation of enzymatic saccharification for acid pretreated lignocellulosic materials with different lignin composition. Enzym Microb Technol 45(2):80–87

    Article  Google Scholar 

  18. Huang L, Mu B, Yi X, Li S, Wang Q (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 168:112–118

    Google Scholar 

  19. Ibrahim MNM, Ahmed-Haras MR, Sipaut CS, Aboul-Encin HY, Mohamed AA (2010a) Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydr Polym 80(4):1102–1110

    Article  Google Scholar 

  20. Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevor FA (2010b) Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr Polym 81:811–819

    Article  Google Scholar 

  21. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kaminski M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937

    Article  Google Scholar 

  22. Kumar S, Gunasekar V, Ponnusami V (2013) Removal of methylene blue from aqueous effluent using fixed bed of groundnut shell powder. J Chem 5

  23. Laboratory Manual (2001) Laboratory Manual of Central Pulp and Paper Research Institute, Analysis of fibrous raw materials, proximate chemical analysis, Saharanpur, 247001(U.P.), India, “Estimation of acid insoluble lignin in wood/nonwood,TM1A-7; Estimation of acid soluble lignin in wood/nonwood,” TM1A-8; “Estimation of holocellulose in wood/nonwood”, TM1-A9

  24. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 20

  25. Li M, Pu Y, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45

    Article  Google Scholar 

  26. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609

    Article  Google Scholar 

  27. Michailos S, Parker D, Webb C (2016) A multicriteria comparison of utilizing sugarcane bagasse for methanol to gasoline and butanol production. Biomass Bioenergy 95:436–448

    Article  Google Scholar 

  28. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  Google Scholar 

  29. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  30. Myriam A, Amezcua-Allieri, Durán TS, Aburto J (2017) Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. Journal of Chemistry 9

  31. Nitsos CK, Lazaridis PA, Mach-Aigner A, Polykarpos A, Matis KA, Triantafyllidis KS (2019) Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem 12(6):1179–1195

    Article  Google Scholar 

  32. Ong R, Chundawat SS, Hodge D, Keskar S, Dale B (2014) Linking plant biology and pretreatment: understanding the structure and organization of the plant cell wall and interactions with cellulosic biofuel production. In: McCann MC, Buckeridge MS, Carpita NC (eds) Plants and Bioenergy. Springer, New York, pp 231–253

    Chapter  Google Scholar 

  33. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro industrial residues. I: Sugarcane Bagasse. Bioresour Technol 74:69–80

    Article  Google Scholar 

  34. Prakash A, Sharma V, Sharma S, Kuila A (2017) Cellulase production from thermochemically pretreated Chenopodium album. Int J Renew Energy Technol

  35. Sharma S, Sharma V, Kuila A (2016, 3 Biotech) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 6:139

  36. Singh P, Nigam N, Pandey A (2009) Sugarcane bagasse, biotechnology for agroindustrial utilization. 239–252, ed-1

  37. Spiance MAS, Lambert CS, Fermoselli KKG, De Paoli MA (2009) Characterization of lignocellulosic curaua fibers. Carbohydr Polym 77(1):47–53

    Article  Google Scholar 

  38. Sun R, Lawther JM, Banks WB (1997) A tentative chemical structure of wheat straw lignin. Ind Crop Prod 6:1–8

    Article  Google Scholar 

  39. Sun RC, Sun XF, Wang SQ, Zhu W (2002) Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind Crop Prod 15(3):179–188

    Article  Google Scholar 

  40. Tserki V, Matzinos P, Kokkou S, Panayiotou C (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I, Surface chemical modification and caracterization of waste flour. Compos A: Appl Sci Manuf 36(7):965–974

    Article  Google Scholar 

  41. Verma N, Bansal MC, Kumar V (2011) Pea peel waste: A lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources 6(2):1505–1519

    Article  Google Scholar 

  42. Verma N, Kumar V, Bansal MC (2018) Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatal Agric Biotechnol 16:483–492

    Article  Google Scholar 

  43. Vyas A, Vyas D, Vyas KM (2005) Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49. J Sci Ind Res 64:281–286

    Google Scholar 

  44. Wang F-L, Li S, Sun Y-X, Han H-Y, Zhang B-X, Hu B-Z, Gao Y-F, Hu X-M (2017) Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Adv 7

  45. Yang S, Li J, Zheng Z, Meng Z (2009) Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono and co digestion. Int Biodeterior Biodegrad 63:569–575

    Article  Google Scholar 

  46. Zhang Y, Wang C, Wang L (2017) Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. J Ind Microbiol Biotechnol 44(3):453–464

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledged the support and facilities provided by Indian Institute of Technology, Roorkee, India for XRD (X-ray diffraction), SEM (scanning electron microscopy), and FTIR facility. They also acknowledged the Ministry of Human Resource and Development, India, for providing fellowship to carry out present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Kumar, V. & Bansal, M.C. Comparative view on microbial consumption of agro-based lignocellulosic waste biomass in sustainable production of cellulases. Biomass Conv. Bioref. 11, 2669–2679 (2021). https://doi.org/10.1007/s13399-020-00617-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00617-0

Keywords

Navigation