Skip to main content

Linking Plant Biology and Pretreatment: Understanding the Structure and Organization of the Plant Cell Wall and Interactions with Cellulosic Biofuel Production

  • Chapter
  • First Online:
Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

In order to more economically process cellulosic feedstocks using a biochemical pathway for fuel production, it is necessary to develop a detailed understanding of plant cell wall characteristics, pretreatment reaction chemistry, and their complex interactions. However given the large number of thermochemical pretreatment methods that are currently being researched and the extreme diversity of plant cell wall structure and composition, this prospect is extremely challenging. Here we present the current state of research at the interface between plant biology and pretreatment chemistry. The first two sections discuss the chemistry of the secondary plant cell wall and how different pretreatment methods alter the overall cell wall structure. The third section addresses how the characteristics of the cell wall and pretreatment efficacy are impacted by different factors such as plant maturity, classification, and plant fraction. The fourth section summarizes current directions in the development of novel plant materials for improved biochemical conversion. And the final section discusses the use of chemical pretreatments as a screening and analysis tool for rapid identification of amenable plant materials, and for expansion of the fundamental understanding of plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AFEX™ is a registered trademark of MBI International, Lansing, MI.

Abbreviations

AFEX™:

Ammonia fiber expansion

BMIMCl:

1-butyl-3-methylimidazolium chloride

CBM:

Carbohydrate binding module

EMIMAc:

1-ethyl-3-methylimidazolium acetate

EMIMCl:

1-ethyl-3-methylimidazolium chloride

G:

Guaiacyl

GAX:

Glucuronoarabinoxylan

H:

p-hydroxyphenyl

IL:

Ionic liquid

S:

Syringyl

TAGs:

Triacylglycerols

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    CAS  Google Scholar 

  • Abramson M, Shoseyov O, Hirsch S, Shani Z (2013) Genetic modifications of plant cell walls to increase biomass and bioethanol production. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 315–338

    Google Scholar 

  • Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung H-JG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525

    CAS  Google Scholar 

  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic ft-ir spectroscopy. Polym 42:963–969

    Google Scholar 

  • Åkerholm M, Salmén L (2004) Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. J Appl Polym Sci 94:2032–2040

    Google Scholar 

  • Alonso-Simón A, Kristensen JB, Øbro J, Felby C, Willats WGT, Jørgensen H (2010) High-throughput microarray profiling of cell wall polymers during hydrothermal pre-treatment of wheat straw. Biotechnol Bioeng 105:509–514

    PubMed  Google Scholar 

  • Altaner CM, Jarvis MC (2008) Modelling polymer interactions of the `molecular velcro’ type in wood under mechanical stress. J Theor Biol 253:434–445

    PubMed  CAS  Google Scholar 

  • Arantes V, Saddler J (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuel 4(3):1–16

    Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    PubMed  CAS  Google Scholar 

  • Awal A, Sain M (2011) Spectroscopic studies and evaluation of thermorheological properties of softwood and hardwood lignin. J Appl Polym Sci 122:956–963

    CAS  Google Scholar 

  • Azarpira A, Lu F, Ralph J (2011) Reactions of dehydrodiferulates with ammonia. Org Biomol Chem 9:6779–6787

    PubMed  CAS  Google Scholar 

  • Bals B, Rogers C, Jin MJ, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuel 3(1):1–11

    Google Scholar 

  • Banerjee G, Car S, Scott-Craig J, Borrusch M, Walton J (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuel 3:22

    Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O et al (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 327:847–860

    PubMed  Google Scholar 

  • Buanafina MMdO, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6:264–280

    PubMed  CAS  Google Scholar 

  • Carpita NC (2012) Progress in the biological synthesis of the plant cell wall: New ideas for improving biomass for bioenergy. Curr Opin Biotechnol 23:330–337

    PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  • Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131

    PubMed  CAS  Google Scholar 

  • Chandrasekaran A, Bharadwaj R, Park JI, Sapra R, Adams PD, Singh AK (2010) A microscale platform for integrated cell-free expression and activity screening of cellulases. J Proteome Res 9:5677–5683

    PubMed  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    PubMed  CAS  Google Scholar 

  • Chen L, Auh C, Chen F, Cheng XF, Aljoe H, Dixon RA et al (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50:5558–5565

    PubMed  CAS  Google Scholar 

  • Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K et al (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. PNAS 109:17117–17122

    PubMed  CAS  Google Scholar 

  • Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, et al (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. PNAS, http://www.pnas.org/content/early/2011/10/04/1113971108.abstract. (Ahead of Print)

  • Chundawat SPS, Balan V, Dale BE (2008) High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 99:1281–1294

    PubMed  CAS  Google Scholar 

  • Chundawat SPS, Donohoe BS, Sousa L, Elder T, Agarwal UP, Lu F et al (2011) Multi-scale visualization and characterization of plant cell wall deconstruction during thermochemical pretreatment. Energ Environ Sci 4:973–984

    CAS  Google Scholar 

  • Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambliss CK et al (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101:8429–8438

    PubMed  CAS  Google Scholar 

  • Clayton DW, Phelps GR (1965) The sorption of glucomannan and xylan on α-cellulose wood fibers. J Polym Sci: Part C 11:197–220

    Google Scholar 

  • Coleman HD, Ellis DD, Gilbert M, Mansfield SD (2006) Up-regulation of sucrose synthase and udp-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J 4:87–101

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    PubMed  CAS  Google Scholar 

  • da Costa Sousa L, Chundawat SPS, Balan V, Dale BE (2009) `Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Google Scholar 

  • Dammström S, Salmén L, Gatenholm P (2009) On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources 4:3–14

    Google Scholar 

  • Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP (2006) Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 129–132:427–435

    PubMed  Google Scholar 

  • de Lima DU, Buckeridge MS (2001) Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohydr Polym 46:157–163

    Google Scholar 

  • DeMartini J, Wyman C (2011a) Composition and hydrothermal pretreatment and enzymatic saccharification performance of grasses and legumes from a mixed-species prairie. Biotechnol Biofuel 4(52):1–10

    Google Scholar 

  • DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG et al (2011a) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energ Environ Sci 4:4332–4339

    CAS  Google Scholar 

  • DeMartini JD, Studer MH, Wyman CE (2011b) Small-scale and automatable high-throughput compositional analysis of biomass. Biotechnol Bioeng 108:306–312

    PubMed  CAS  Google Scholar 

  • DeMartini JD, Wyman CE (2011b) Changes in composition and sugar release across the annual rings of Populus wood and implications on recalcitrance. Bioresour Technol 102:1352–1358

    PubMed  CAS  Google Scholar 

  • Dien BS, Jung H-JG, Vogel KP, Casler MD, Lamb JFS, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenerg 30:880–891

    CAS  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    CAS  Google Scholar 

  • Donohoe B, Decker S, Tucker M, Himmel M, Vinzant T (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    PubMed  CAS  Google Scholar 

  • Donohoe BS, Selig MJ, Viamajala S, Vinzant TB, Adney WS, Himmel ME (2009) Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol Bioeng 103:480–489

    PubMed  CAS  Google Scholar 

  • Donohoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ et al (2011) Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour Technol 102:11097–11104

    PubMed  CAS  Google Scholar 

  • Du BW, Sharma LN, Becker C, Chen S-F, Mowery RA, van Walsum GP et al (2010) Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107:430–440

    PubMed  CAS  Google Scholar 

  • Duguid KB, Montross MD, Radtke CW, Crofcheck CL, Shearer SA, Hoskinson RL (2007) Screening for sugar and ethanol processing characteristics from anatomical fractions of wheat stover. Biomass Bioenerg 31:585–592

    CAS  Google Scholar 

  • Duguid KB, Montross MD, Radtke CW, Crofcheck CL, Wendt LM, Shearer SA (2009) Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour Technol 100:5189–5195

    PubMed  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    PubMed  CAS  Google Scholar 

  • Engels FM, Jung HG (1998) Alfalfa stem tissues: cell-wall development and lignification. Ann Bot 82:561–568

    Google Scholar 

  • Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI et al (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10:609–620

    PubMed  CAS  Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. PNAS, http://www.pnas.org/content/early/2011/02/04/1100310108.abstract. (Ahead of Print)

  • Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011

    PubMed  CAS  Google Scholar 

  • Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Muller C et al (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9(86):1–13

    Google Scholar 

  • Garlock R, Chundawat S, Balan V, Dale B (2009) Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis. Biotechnol Biofuel 2(29):1–14

    Google Scholar 

  • Garlock RJ, Balan V, Dale BE (2012a) Optimization of AFEX™ pretreatment conditions and enzyme mixtures to maximize sugar release from upland and lowland switchgrass. Bioresour Technol 104:757–768

    PubMed  CAS  Google Scholar 

  • Garlock RJ, Balan V, Dale BE, Ramesh Pallapolu V, Lee YY, Kim Y et al (2011) Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresour Technol 102:11063–11071

    PubMed  CAS  Google Scholar 

  • Garlock RJ, Bals B, Jasrotia P, Balan V, Dale BE (2012b) Influence of variable species composition on the saccharification of AFEX™ pretreated biomass from unmanaged fields in comparison to corn stover. Biomass Bioenerg 37:49–59

    CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202

    CAS  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    PubMed  Google Scholar 

  • Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3(12):1–7

    Google Scholar 

  • Gomez L, Whitehead C, Barakate A, Halpin C, McQueen-Mason S (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuel 3(23):1–12

    Google Scholar 

  • Grabber JH, Hatfield RD, Lu FC, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516

    PubMed  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614

    CAS  Google Scholar 

  • Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1:51–61

    CAS  Google Scholar 

  • Harris P, Trethewey J (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    CAS  Google Scholar 

  • Hartati S, Sudarmonowati E, Park YW, Kaku T, Kaida R, Baba Ki et al (2008) Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon. Plant Physiol 147:552–561

    PubMed  CAS  Google Scholar 

  • Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochem 29:733–737

    CAS  Google Scholar 

  • Imamura T, Watanabe T, Kuwahara M, Koshijima T (1994) Ester linkages between lignin and glucuronic acid in lignin-carbohydrate complexes from Fagus crenata. Phytochem 37:1165–1173

    CAS  Google Scholar 

  • Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581

    PubMed  CAS  Google Scholar 

  • Ivakov A, Persson S (2012) Plant cell walls. eLS. Wiley, pp 1–17 doi: 10.1002/9780470015902.a0001682.pub2

  • Jäger G, Wulfhorst H, Zeithammel EU, Elinidou E, Spiess AC, Büchs J (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6:74–85

    PubMed  Google Scholar 

  • Jarvis MC (2012) Sclerenchyma. eLS. Wiley, pp 1–3 doi: 10.1002/9780470015902.a0002082.pub2

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    PubMed  CAS  Google Scholar 

  • Jung H-JG, Samac DA, Sarath G (2012) Modifying crops to increase cell wall digestibility. Plant Sci 185–186:65–77

    PubMed  Google Scholar 

  • Kabel MA, van den Borne H, Vincken J-P, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69:94–105

    CAS  Google Scholar 

  • Karlsson O, Ikeda T, Kishimoto T, Magara K, Matsumoto Y, Hosoya S (2004) Isolation of lignin–carbohydrate bonds in wood. Model experiments and preliminary application to pine wood. J Wood Sci 50:141–150

    Google Scholar 

  • Karlsson O, Lundquist K, Meuller S, Westlid K (1988) On the acidolytic cleavage of arylglycerol β-aryl ethers. Acta Chem Scand B 42:48–51

    Google Scholar 

  • Keskar SS, Edye LA, Doherty WOS, Bartley JP (2011) The chemistry of acid catalyzed delignification of sugarcane bagasse in the ionic liquid trihexyl tetradecyl phosphonium chloride. J Wood Chem Technol 32:71–81

    Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org Biomol Chem 8:576–591

    PubMed  CAS  Google Scholar 

  • Kim Y, Mosier NS, Ladisch MR, Ramesh Pallapolu V, Lee YY, Garlock R et al (2011) Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour Technol 102:11089–11096

    PubMed  CAS  Google Scholar 

  • Kimon KS, Leslie Alan E, William Orlando Sinclair D (2011) Enhanced saccharification kinetics of sugarcane bagasse pretreated in 1-butyl-3-methylimidazolium chloride at high temperature and without complete dissolution. Bioresour Technol 102:9325–9329

    PubMed  CAS  Google Scholar 

  • King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H et al (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026

    CAS  Google Scholar 

  • Kishimoto T, Chiba W, Saito K, Fukushima K, Uraki Y, Ubukata M (2009) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J Agric Food Chem 58:895–901

    Google Scholar 

  • Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51:281–300

    CAS  Google Scholar 

  • Koo B-W, Min B-C, Gwak K-S, Lee S-M, Choi J-W, Yeo H et al (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenerg 42:24–32

    CAS  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    PubMed  CAS  Google Scholar 

  • Larsen SU, Bruun S, Lindedam J (2012) Straw yield and saccharification potential for ethanol in cereal species and wheat cultivars. Biomass Bioenerg 45:239–250

    CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2006) Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung 60:156–161

    CAS  Google Scholar 

  • Le Ngoc Huyen T, Rémond C, Dheilly RM, Chabbert B (2010) Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresour Technol 101:8224–8231

    Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089

    PubMed  CAS  Google Scholar 

  • Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047

    CAS  Google Scholar 

  • Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M et al (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuel 3(27):1–7

    Google Scholar 

  • Liang H, Frost CJ, Wei X, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. CLEAN–Soil, Air, Water 36:662–668

    CAS  Google Scholar 

  • Lindedam J, Andersen SB, DeMartini J, Bruun S, Jørgensen H, Felby C et al (2012) Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw. Biomass Bioenerg 37:221–228

    CAS  Google Scholar 

  • Lindedam J, Bruun S, Jorgensen H, Felby C, Magid J (2010) Cellulosic ethanol: Interactions between cultivar and enzyme loading in wheat straw processing. Biotechnol Biofuel 3(25):1–10

    Google Scholar 

  • Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R et al (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. PNAS 107:616–621

    PubMed  CAS  Google Scholar 

  • Lundquist K (1973) Acid degradation of lignin. Part VIII. Low molecular weight phenols from acidolysis of birch lignin. Acta Chem Scand 27:2597–2606

    CAS  Google Scholar 

  • Lundquist K, Lundgren R (1972) Acid degradation of lignin. Part VII. The cleavage of ether bonds. Acta Chem Scand 26:2005–2023

    CAS  Google Scholar 

  • MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M (2006) Lewis base ionic liquids. Chem Commun, 1905–1917, doi: 10.1039/B516961P

  • Maloney MT, Chapman TW, Baker AJ (1985) Dilute acid hydrolysis of paper birch: kinetics studies of xylan and acetyl-group hydrolysis. Biotechnol Bioeng 27:355–361

    PubMed  CAS  Google Scholar 

  • Maloney VJ, Mansfield SD (2010) Characterization and varied expression of a membrane-bound endo-β-1,4-glucanase in hybrid poplar. Plant Biotechnol J 8:294–307

    PubMed  CAS  Google Scholar 

  • McGee JK, April GC (1982) Chemicals from renewable resources: hemicellulose behavior during organosolv delignification of southern yellow pine. Chem Eng Commun 19:49–56

    CAS  Google Scholar 

  • Mechin V, Argillier O, Rocher F, Hebert Y, Mila I, Pollet B et al (2005) In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. J Agric Food Chem 53:5872–5881

    PubMed  CAS  Google Scholar 

  • Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J et al (2007) High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:1118–1128

    PubMed  CAS  Google Scholar 

  • Morreel K, Dima O, Kim H, Lu F, Niculaes C, Vanholme R et al (2010) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153:1464–1478

    PubMed  CAS  Google Scholar 

  • Muhammad N, Omar WN, Man Z, Bustam MA, Rafiq S, Uemura Y (2012) Effect of ionic liquid treatment on pyrolysis products from bamboo. Ind Eng Chem Res 51:2280–2289

    CAS  Google Scholar 

  • Ong RG (2011) Interactions between biomass feedstock characteristics and bioenergy production: from the landscape to the molecular scale, PhD., Michigan State University, USA

    Google Scholar 

  • Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z et al (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153:514–525

    PubMed  CAS  Google Scholar 

  • Pauly M, Hake S, Kraemer FJ (2011) Maize variety and method of production. US Patent 13/152,219, Filed 2 Jun 2011

    Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol 27:739–750

    CAS  Google Scholar 

  • Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenerg 28:366–374

    CAS  Google Scholar 

  • Ralph J, Brunow G, Boerjan W (2007) Lignins. eLS. Wiley, pp 1–10, doi: 10.1002/9780470015902.a0020104

  • Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H et al (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:667–682

    PubMed  CAS  Google Scholar 

  • Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresour Technol 106:138–146

    PubMed  CAS  Google Scholar 

  • Rock K, Thelemann R, Jung H-J, Tschirner U, Sheaffer C, Johnson G (2009) Variation due to growth environment in alfalfa yield, cellulosic ethanol traits, and paper pulp characteristics. Bioenerg Res 2:79–89

    Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    PubMed  CAS  Google Scholar 

  • Saake B, Lehnen R (2007) Lignin. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, doi:10.1002/14356007.a15_305.pub3

    Google Scholar 

  • Sanjaya Durrett TP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J 9:874–883

    PubMed  CAS  Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Miller SJ (2009) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energ Fuel 24:683–689

    Google Scholar 

  • Santoro N, Cantu S, Tornqvist C-E, Falbel T, Bolivar J, Patterson S et al (2010) A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility. Bioenerg Res 3:93–102

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    PubMed  CAS  Google Scholar 

  • Selig M, Tucker M, Law C, Doeppke C, Himmel M, Decker S (2011) High throughput determination of glucan and xylan fractions in lignocelluloses. Biotechnol Lett 33:961–967

    PubMed  CAS  Google Scholar 

  • Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME et al (2010) Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 6:104–111

    CAS  Google Scholar 

  • Sewalt VJH, Fontenot JP, Allen VG, Glasser WG (1996) Fiber composition and in vitro digestibility of corn stover fractions in response to ammonia treatment. J Agric Food Chem 44:3136–3142

    CAS  Google Scholar 

  • Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ et al (2012) Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193:121–136

    PubMed  CAS  Google Scholar 

  • Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE et al (2011) Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 102:11080–11088

    PubMed  CAS  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol R 70:283–295

    CAS  Google Scholar 

  • Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:312–319

    Google Scholar 

  • Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75

    PubMed  CAS  Google Scholar 

  • Siqueira G, Milagres A, Carvalho W, Koch G, Ferraz A (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuel 4:7

    CAS  Google Scholar 

  • Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A et al (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703

    PubMed  CAS  Google Scholar 

  • Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    PubMed  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    PubMed  CAS  Google Scholar 

  • Stone B (2005) Cellulose: Structure and distribution. eLS. Wiley, pp 1–8, doi: 10.1038/npg.els.0003892

  • Studer M, Brethauer S, DeMartini J, McKenzie H, Wyman C (2011a) Co-hydrolysis of hydrothermal and dilute acid pretreated populus slurries to support development of a high-throughput pretreatment system. Biotechnol Biofuel 4(19):1–10

    Google Scholar 

  • Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE (2010) Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 105:231–238

    PubMed  CAS  Google Scholar 

  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M et al (2011b) Lignin content in natural Populus variants affects sugar release. PNAS 108:6300–6305

    PubMed  CAS  Google Scholar 

  • Sun L, Simmons BA, Singh S (2011) Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral raman imaging. Biotechnol Bioeng 108:286–295

    PubMed  CAS  Google Scholar 

  • Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96:1599–1606

    PubMed  CAS  Google Scholar 

  • Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energ Environ Sci 4:3913–3929

    CAS  Google Scholar 

  • Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. In: Hajny GJ, Reese ET (eds) Cellulases and their applications. American Chemical Society, Washington, D. C., pp 197–218

    Google Scholar 

  • Teymouri F, Alizadeh H, Laureano-Pérez L, Dale B, Sticklen M (2004) Effects of ammonia fiber explosion treatment on activity of endoglucanase from acidothermus cellulolyticus in transgenic plant. Appl Biochem Biotechnol 116:1183–1191

    Google Scholar 

  • Tunc MS, van Heiningen ARP (2008) Hemicellulose extraction of mixed southern hardwood with water at 150°C: effect of time. Ind Eng Chem Res 47:7031–7037

    CAS  Google Scholar 

  • Várnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzym Microb Technol 46:185–193

    Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    PubMed  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    CAS  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH (2011) Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant, Cell Environ 34:655–668

    Google Scholar 

  • Wallace G, Russell WR, Lomax JA, Jarvis MC, Lapierre C, Chesson A (1995) Extraction of phenolic-carbohydrate complexes from graminaceous cell walls. Carbohydr Res 272:41–53

    CAS  Google Scholar 

  • Wang PY, Bolker HI, Purves CB (1964) Ammonolysis of uronic ester groups in birch xylan. Can J Chem 42:2434–2439

    CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    CAS  Google Scholar 

  • Willför S, Sundberg A, Hemming J, Holborn B (2005a) Polysaccharides in selected industrially important softwood species. In: 59th appita annual conference and exhibition. Auckland, New Zealand, pp 415–422

    Google Scholar 

  • Willför S, Sundberg A, Pranovich A, Holborn B (2005b) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617

    Google Scholar 

  • Wilson JR, Hatfield RD (1997) Structural and chemical changes of cell wall types during stem development: consequences for fibre degradation by rumen microflora. Aust J Agric Res 48:165–180

    Google Scholar 

  • Wiman M, Dienes D, Hansen MAT, van der Meulen T, Zacchi G, Lidén G (2012) Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol 126:208–215

    PubMed  CAS  Google Scholar 

  • Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875

    PubMed  CAS  Google Scholar 

  • Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS, et al (2013) Comparative performance of leading pretreatment technologies for biological conversion of corn stover, poplar wood, and switchgrass to sugars, 1st edn. In: Wyman CE (ed) Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. Wiley, London, pp 245–265

    Google Scholar 

  • Xiao L-P, Shi Z-J, Xu F, Sun R-C (2013) Characterization of lignins isolated with alkaline ethanol from the hydrothermal pretreated Tamarix ramosissima. Bioenerg Res 6:1–14

    Google Scholar 

  • Xu H, Pan W, Wang R, Zhang D, Liu C (2012) Understanding the mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride ionic liquid via quantum chemistry calculations and molecular dynamics simulations. J Comput Aided Mol Des 26:329–337

    PubMed  CAS  Google Scholar 

  • Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P et al (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (Part 1). Biotechnol Bioeng 109:390–397

    PubMed  CAS  Google Scholar 

  • Zhang H, Fangel JU, Willats WGT, Selig MJ, Lindedam J, Jørgensen H, et al (2013a) Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion. GCB Bioenergy, doi: 10.1111/gcbb.12060, (Ahead of Print)

    Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Google Scholar 

  • Zhang X, Yang W, Blasiak W (2011a) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energ Fuel 25:4786–4795

    CAS  Google Scholar 

  • Zhang Y, Culhaoglu T, Pollet B, Melin C, Denoue D, Barrière Y et al (2011b) Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J Agric Food Chem 59:10129–10135

    PubMed  CAS  Google Scholar 

  • Zhang Z, O’Hara IM, Doherty WOS (2013b) Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Green Chem 15:431–438

    CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuel Bioprod Biorefin 6:561–579

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Garlock Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ong, R.G., Chundawat, S.P., Hodge, D.B., Keskar, S., Dale, B.E. (2014). Linking Plant Biology and Pretreatment: Understanding the Structure and Organization of the Plant Cell Wall and Interactions with Cellulosic Biofuel Production. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_14

Download citation

Publish with us

Policies and ethics