Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review

Abstract

Biomass waste generation is increasing enormously and biomass burning emits greenhouse gas emissions causing severe effects on the environment and health of the population. It contains high organic and carbon content which can be reused/diverted for useful products (like Biochar) that facilitate climate change mitigation. Biochar, a renewable carbon, is gaining importance and it opens up an area of research to explore on the properties and stability of biochar, its wide applications, impacts on soil characteristics, techno-economic details, carbon and nitrogen interactions of biochar-soil matrix, and emission control. This review addresses opportunities of biomass wastes for biochar production, various thermo-chemical reactions for preparation and its basics/mechanisms, properties of biochar and hydrochar, and gaps/operational challenges, and summarizes wide applications of biochar in soil improvement, climate change mitigation, energy production, waste management, and environmental remediation. The effect of physico-chemical parameters (temperature, heating rate, chemical composition, etc.) on the biochar production will help in valorizing this industry. The optimized process conditions involved in low temperature (torrefaction, microwave-assisted pyrolysis, hydrothermal carbonization), pyrolysis (Fast, Slow, Flash), gasification, and combustion processes for biochar, syngas, and bio-oil production are to be explored. The critical review on the biochar addition influence on CO2, CH4, and N2O emissions in various soil types and carbon sequestration is done here. The modification and activation of biochar are recently attractive due to their role in improving biochar quality and for expanding its applications. Limitations and future status of biochar production from biomass waste are highlighted. Biochar will be a promising solution as an alternative to fossil fuels, waste management, bioenergy, and combat climate change.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Alford RA, Bradfield KS, Richards SJ (2007) Global warming and amphibian losses. Nature 447:E3–E4. https://doi.org/10.1038/nature05940

    Article  Google Scholar 

  2. 2.

    Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Quere CL, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4–6. https://doi.org/10.1038/nclimate1783

    Article  Google Scholar 

  3. 3.

    Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    Article  Google Scholar 

  4. 4.

    Maibach EW, Sarfaty M, Mitchell M, Gould R (2019) Limiting global warming to 1.5 to 2.0°C—A unique and necessary role for health professionals. PLoS Med 16(5):e1002804. https://doi.org/10.1371/journal.pmed.1002804

    Article  Google Scholar 

  5. 5.

    IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels a, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge and New York, pp 1535

  6. 6.

    Dlugokencky EJ, Hall BD, Montzka SA, Dutton G, Mühle J, Elkins JW (2018) Atmospheric composition [in “state of the climate in 2017”]. Bull Am Meteorol Soc 99(8):S46–S49. https://doi.org/10.1175/2018BAMSStateoftheClimate.1

    Article  Google Scholar 

  7. 7.

    Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 104(24):10288–10293. https://doi.org/10.1073/pnas.0700609104

    Article  Google Scholar 

  8. 8.

    Jacobson MZ (2004) The short-term cooling but long-term global warming due to biomass burning. J Clim 17(15):2909–2926. https://doi.org/10.1175/1520-0442(2004)017<2909:TSCBLG>2.0.CO;2

    Article  Google Scholar 

  9. 9.

    Jacobson (2014) Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res-Atmos 119:8980–9002. https://doi.org/10.1002/2014JD021861

    Article  Google Scholar 

  10. 10.

    Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966. https://doi.org/10.1029/2000GB001382

    Article  Google Scholar 

  11. 11.

    Chung CE, Ramanathan V, Decremer D (2012) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci U S A 109(29):11624–11629. https://doi.org/10.1073/pnas.1203707109

    Article  Google Scholar 

  12. 12.

    Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702. https://doi.org/10.1038/ngeo313

    Article  Google Scholar 

  13. 13.

    Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45(C):359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  14. 14.

    Kumar A, Kumar N, Baredar P, Shukla P (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sust Energ Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  15. 15.

    Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  Google Scholar 

  16. 16.

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. https://doi.org/10.1126/science.281.5374.237

    Article  Google Scholar 

  17. 17.

    Murali S, Shrivastava R, Saxena M (2007) Quantification of agricultural residues for energy generation—a case study. J Inst Public Health Eng 3:27–31

    Google Scholar 

  18. 18.

    Brosowski A, Thran D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016) A review of biomass potential and current utilisation—status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272. https://doi.org/10.1016/j.biombioe.2016.10.017

    Article  Google Scholar 

  19. 19.

    Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. https://doi.org/10.1038/ncomms1053

    Article  Google Scholar 

  20. 20.

    Puligundla P, Oh S-E, Mok C (2016) Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett 17(1):1–10. https://doi.org/10.5714/CL.2016.17.1.001

    Article  Google Scholar 

  21. 21.

    Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248. https://doi.org/10.1016/j.jaap.2004.07.003

    Article  Google Scholar 

  22. 22.

    Schmidt H-P, Anca-Couce A, Hagemann N, Werner C, Gerten D, Lucht W, Kammann C (2019) Pyrogenic carbon capture and storage. GCB Bioenergy 11:573–591. https://doi.org/10.1111/gcbb.12553

    Article  Google Scholar 

  23. 23.

    Jones DL, Healey JR (2010) Organic amendments for remediation: putting waste to good use. Elements 6:369–374. https://doi.org/10.2113/gselements.6.6.369

    Article  Google Scholar 

  24. 24.

    Sohi SP, Krull E, Bol R (2010) Chapter 2-a review of biochar and its use and function in soil. Adv Agron 105:47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  Google Scholar 

  25. 25.

    Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

    Article  Google Scholar 

  26. 26.

    Inyang M, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  Google Scholar 

  27. 27.

    Li DC, Jiang H (2017) The thermochemical conversion of non-lignocellulosic biomass to form biochar: a review on characterizations and mechanism elucidation. Bioresour Technol 246:57–68. https://doi.org/10.1016/j.biortech.2017.07.029

    Article  Google Scholar 

  28. 28.

    Ahmed ASF, Vanga S, Raghavan V (2018) Global bibliometric analysis of the research in biochar. J Agri Food Info 19(3):228–236. https://doi.org/10.1080/10496505.2017.1403328

    Article  Google Scholar 

  29. 29.

    Mankasingh U, Choi P, Ragnarsdottir V (2011) Biochar application in a tropical, agricultural region: a plot scale study in Tamil Nadu, India. Appl Geochem 26:218–221. https://doi.org/10.1016/j.apgeochem.2011.03.108

    Article  Google Scholar 

  30. 30.

    Parmar A, Nema PK, Agarwal T (2014) Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management. Curr Sci 107(10):1673–1682

    Google Scholar 

  31. 31.

    Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493. https://doi.org/10.1016/j.jaap.2013.05.022

    Article  Google Scholar 

  32. 32.

    Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 1–12

    Google Scholar 

  33. 33.

    Wang X, Qin G, Chen M, Wang J (2016) Microwave-assisted pyrolysis of cotton stalk with additives. BioResources 11(13):6125–6136

    Google Scholar 

  34. 34.

    Mohan D, Sarswat A, Ok YS, Charles U, Jr P (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: a critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  35. 35.

    Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144. https://doi.org/10.1038/447143a

    Article  Google Scholar 

  36. 36.

    Roberts K, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833. https://doi.org/10.1021/es902266r

    Article  Google Scholar 

  37. 37.

    Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrolysis 86(2):331–337. https://doi.org/10.1016/j.jaap.2009.08.006

    Article  Google Scholar 

  38. 38.

    Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7(5):384–401. https://doi.org/10.1089/IND.2011.0014

    Article  Google Scholar 

  39. 39.

    Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  Google Scholar 

  40. 40.

    Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood part 2. Analysis of products. J Anal Appl Pyrol 77:35–40. https://doi.org/10.1016/j.jaap.2006.01.001

    Article  Google Scholar 

  41. 41.

    Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  Google Scholar 

  42. 42.

    Brassard P, Godbout S, Raghavan V (2017) Pyrolysis in auger reactors for biochar and bio-oil production: a review. Biosyst Eng 161:80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020

    Article  Google Scholar 

  43. 43.

    Novotny EH, Maia CMBF, Carvalho M, Madari BE (2015) Biochar: pyrogenic carbon for agricultural use – a critical review. Rev Bras Ciênc Solo 39:321–344. https://doi.org/10.1590/01000683rbcs20140818

    Article  Google Scholar 

  44. 44.

    Zhang H, Xiao R, Wang D, He G, Shao S, Zhang J, Zhong Z (2011) Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour Technol 102(5):4258–4264. https://doi.org/10.1016/j.biortech.2010.12.075

    Article  Google Scholar 

  45. 45.

    Marculescu C (2012) Comparative analysis on waste to energy conversion chains using thermal-chemical processes. Energy Procedia 18:604–611. https://doi.org/10.1016/j.egypro.2012.05.073

    Article  Google Scholar 

  46. 46.

    Yin C (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour Technol 120:273–284. https://doi.org/10.1016/j.biortech.2012.06.016

    Article  Google Scholar 

  47. 47.

    Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol 148:196–201. https://doi.org/10.1016/j.biortech.2013.08.135

    Article  Google Scholar 

  48. 48.

    Sánchez ME, Menéndez JA, Domínguez A, Pis JJ, Martínez O, Calvo LF, Bernad PL (2009) Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 33(6–7):933–940. https://doi.org/10.1016/j.biombioe.2009.02.002

    Article  Google Scholar 

  49. 49.

    Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  Google Scholar 

  50. 50.

    Ahmad M, Lee SS, Rajapaksha AU, Vithanage M, Zhang M, Cho JS, Lee S-E, Ok YS (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol 143:615–622. https://doi.org/10.1016/j.biortech.2013.06.033

    Article  Google Scholar 

  51. 51.

    Areeprasert C, Leelachaikul P, Jangkobpattana G, Phumprasop K, Kiattiwat T (2018) Biochar preparation from simulated municipal solid waste employing low temperature carbonization process. IOP Conf Ser Mater Sci Eng 311:1–5. https://doi.org/10.1088/1757-899X/311/1/012021

    Article  Google Scholar 

  52. 52.

    Zaker A, Chena Z, Wang X, Zhang Q (2019) Microwave-assisted pyrolysis of sewage sludge: a review. Fuel Process Technol 187:84–104. https://doi.org/10.1016/j.fuproc.2018.12.011

    Article  Google Scholar 

  53. 53.

    Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  54. 54.

    Yang X, Zhang S, Ju M, Liu L (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci 9(7):1365. https://doi.org/10.3390/app9071365

    Article  Google Scholar 

  55. 55.

    Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B (2011) Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl Microbiol Biotechnol 90(3):827–836. https://doi.org/10.1007/s00253-011-3188-4

    Article  Google Scholar 

  56. 56.

    Hagemann N, Spokas K, Schmidt H-P, Kägi R, Böhler MA, Bucheli TD (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10:182. https://doi.org/10.3390/w10020182

    Article  Google Scholar 

  57. 57.

    Lapuerta M, Hernández JJ, Pazo A, López J (2008) Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol 89(9):828–837. https://doi.org/10.1016/j.fuproc.2008.02.001

    Article  Google Scholar 

  58. 58.

    Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014) Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenergy 1:11–29. https://doi.org/10.2478/apbi-2014-0001

    Article  Google Scholar 

  59. 59.

    Correa CR, Kruse A (2018) Biobased functional carbon materials: production, characterization, and applications—a review. Materials 11(9):1568. https://doi.org/10.3390/ma11091568

    Article  Google Scholar 

  60. 60.

    Liu Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci 16:159–166. https://doi.org/10.1016/j.proenv.2012.10.022

    Article  Google Scholar 

  61. 61.

    Stemann J, Erlach B, Ziegler F (2013) Hydrothermal carbonisation of empty palm oil fruit bunches: laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste Biomass Valor 4:441–454. https://doi.org/10.1007/s12649-012-9190-y

    Article  Google Scholar 

  62. 62.

    Kannan S, Gariepy Y, Raghavan GSV (2018) Conventional hydrothermal carbonization of shrimp waste. Energy Fuel 32:3532–3542. https://doi.org/10.1021/acs.energyfuels.7b03997

    Article  Google Scholar 

  63. 63.

    Kannan S, Gariepy Y, Raghavan GSV (2018) Optimization of the conventional hydrothermal carbonization to produce hydrochar from fish waste. Biomass Convers Biorefin 8:563–576. https://doi.org/10.1007/s13399-018-0323-9

    Article  Google Scholar 

  64. 64.

    Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physicochemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59. https://doi.org/10.1016/j.agee.2015.03.015

    Article  Google Scholar 

  65. 65.

    Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS One 8(9):e75932. https://doi.org/10.1371/journal.pone.0075932

    Article  Google Scholar 

  66. 66.

    Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag 1:289–303. https://doi.org/10.4155/cmt.10.32

    Article  Google Scholar 

  67. 67.

    Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manag 181:484–497. https://doi.org/10.1016/j.jenvman.2016.06.063

    Article  Google Scholar 

  68. 68.

    Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002

    Article  Google Scholar 

  69. 69.

    Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous as(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. https://doi.org/10.1016/j.biortech.2014.06.103

    Article  Google Scholar 

  70. 70.

    Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annu Environ Sci 3:195–206

    Google Scholar 

  71. 71.

    Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255. https://doi.org/10.1016/j.soilbio.2013.12.026

    Article  Google Scholar 

  72. 72.

    Oh T-K, Choi B, Shinogi Y, Chikushi J (2012) Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut 223(7):3729–3738. https://doi.org/10.1007/s11270-012-1144-2

    Article  Google Scholar 

  73. 73.

    Brassard P, Godbout S, Raghavan V, Palacios JH (2017) Grenier M and Zegan D (2017) the production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration. Energies 10(3):288. https://doi.org/10.3390/en10030288

    Article  Google Scholar 

  74. 74.

    Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. https://doi.org/10.1016/j.biortech.2014.01.058

    Article  Google Scholar 

  75. 75.

    Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. In: Lehmann J, Joseph S (eds) Biochar for environmental management - science and technology, 2nd edn. Routledge, London

    Google Scholar 

  76. 76.

    Wang C, Tu Q, Dong D, Strong PJ, Wang H, Sun B, Wu W (2014) Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J Hazard Mater 280:409–416. https://doi.org/10.1016/j.jhazmat.2014.08.030

    Article  Google Scholar 

  77. 77.

    Ahmed ASF, Raghavan V (2018) Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils. Int Agrophys 32:1–10. https://doi.org/10.1515/intag-2016-0094

    Article  Google Scholar 

  78. 78.

    Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. https://doi.org/10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  79. 79.

    Ahmed ASF, Kurian J, Raghavan V (2016) Biochar influences on agricultural soils, crop production, and the environment: a review. Environ Rev 24(4):495–502. https://doi.org/10.1139/er-2016-0008

    Article  Google Scholar 

  80. 80.

    Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(1–3):432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063

    Article  Google Scholar 

  81. 81.

    Li Y, Hu S, Chen J, Müller K, Li Y, Fu W, Lin Z, Wang H (2018) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments 18:546–563. https://doi.org/10.1007/s11368-017-1906-y

    Article  Google Scholar 

  82. 82.

    Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78. https://doi.org/10.1016/j.jaap.2013.02.010

    Article  Google Scholar 

  83. 83.

    Winsley P (2007) Biochar and bioenergy production for climate change mitigation. N Z Sci Rev 64(1):5–10

    Google Scholar 

  84. 84.

    Yoder J, Galinato S, Granatstein D, Garcia-Perez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(5):1851–1862. https://doi.org/10.1016/j.biombioe.2011.01.026

    Article  Google Scholar 

  85. 85.

    Borchard N, Wolf A, Laabs V, Aeckersberg R, Scherer HW, Moeller A, Amelung W (2012) Physical activation of biochar and its meaning for soil fertility and nutrient leaching – a greenhouse experiment. Soil Use Manag 28:177–184. https://doi.org/10.1111/j.1475-2743.2012.00407.x

    Article  Google Scholar 

  86. 86.

    Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  Google Scholar 

  87. 87.

    Akgül TG, Maden TB, Diaz E, Jiménez EM (2018) Modification of tea biochar with mg, Fe, Mn and Al salts for efficient sorption of PO43− and Cd2+ from aqueous solutions. J Water Reuse Desal 9(1):57–66. https://doi.org/10.2166/wrd.2018.018

    Article  Google Scholar 

  88. 88.

    Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

    Article  Google Scholar 

  89. 89.

    Field JL, Keske CMH, Birch GL, Defoort MW, Cotrufo MF (2013) Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. GCB Bioenergy 5:177–191. https://doi.org/10.1111/gcbb.12032

    Article  Google Scholar 

  90. 90.

    Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

    Article  Google Scholar 

  91. 91.

    Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fertil Soils 43:699–708. https://doi.org/10.1007/s00374-006-0152-z

    Article  Google Scholar 

  92. 92.

    Uchimiya M, Ohno T, He Z (2013) Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J Anal Appl Pyrolysis 104:84–94. https://doi.org/10.1016/j.jaap.2013.09.003

    Article  Google Scholar 

  93. 93.

    Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) Review-a quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. https://doi.org/10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  94. 94.

    Liu S, Meng J, Jiang L, Yang X, Lan Y, Cheng X, Chen W (2017) Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl Soil Ecol 116:12–22. https://doi.org/10.1016/j.apsoil.2017.03.020

    Article  Google Scholar 

  95. 95.

    Petter FA, de Lima LB, Marimon Junior BH, de Morais LA, Marimon BS (2016) Impact of biochar on nitrous oxide emissions from upland rice. J Environ Manag 169:27–33. https://doi.org/10.1016/j.jenvman.2015.12.020

    Article  Google Scholar 

  96. 96.

    Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sanchez-Monedero A (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16. https://doi.org/10.1016/j.agee.2013.10.009

    Article  Google Scholar 

  97. 97.

    Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345(1–2):47–58. https://doi.org/10.1007/s11104-011-0759-1

    Article  Google Scholar 

  98. 98.

    Sigua GC, Novak JM, Watts DW, Cantrell KB, Shumaker PD, Szogi AA, Johnson MG (2014) Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolysed biochar. Chemosphere 103:313–321. https://doi.org/10.1016/j.chemosphere.2013.12.024

    Article  Google Scholar 

  99. 99.

    Atkinson JC, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  100. 100.

    Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. https://doi.org/10.1016/j.soilbio.2011.07.020

    Article  Google Scholar 

  101. 101.

    Fang Y, Singh B, Singh BP (2015) Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 80:136–145. https://doi.org/10.1016/j.soilbio.2014.10.006

    Article  Google Scholar 

  102. 102.

    Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39(4):1218–1223. https://doi.org/10.2134/jeq2010.0204

    Article  Google Scholar 

  103. 103.

    Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of Forest humus. Science 320:629. https://doi.org/10.1126/science.1154960

    Article  Google Scholar 

  104. 104.

    Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. https://doi.org/10.1111/gcbb.12037

    Article  Google Scholar 

  105. 105.

    Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005

    Article  Google Scholar 

  106. 106.

    Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300(1–2):9–20. https://doi.org/10.1007/s11104-007-9391-5

    Article  Google Scholar 

  107. 107.

    Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899. https://doi.org/10.1002/jpln.200625199

    Article  Google Scholar 

  108. 108.

    Mukherjee A, Lal R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36. https://doi.org/10.1016/j.scitotenv.2014.03.141

    Article  Google Scholar 

  109. 109.

    Ahmed ASF, Gariepy Y, Raghavan V (2017) Influence of wood-derived biochar on the compactibility and strength of silt loam soil. Int Agrophys 31:149–155. https://doi.org/10.1515/intag-2016-0044

    Article  Google Scholar 

  110. 110.

    Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat GL 11(2):395–419. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  111. 111.

    Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Sparks DL, editor. Adv Agron 112:103–143. https://doi.org/10.1016/B978-0-12-385538-1.00003-2

    Article  Google Scholar 

  112. 112.

    Streubel JD, Collins HP, Garcia-Perez M, Tarara J, Granatstein D, Kruger CE (2011) Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci Soc Am J 75:1402–1413. https://doi.org/10.2136/sssaj2010.0325

    Article  Google Scholar 

  113. 113.

    Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k

    Article  Google Scholar 

  114. 114.

    Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  Google Scholar 

  115. 115.

    Lucchini P, Quilliam RS, DeLuca TH, Vamerali T, Jones DL (2014) Does biochar application alter heavy metal dynamics in agricultural soil? Agric Ecosyst Environ 184:149–157. https://doi.org/10.1016/j.agee.2013.11.018

    Article  Google Scholar 

  116. 116.

    Reed E, Chadwick D, Hill P, Jones D (2017) Critical comparison of the impact of biochar and wood ash on soil organic matter cycling and grassland productivity. Soil Biol Biochem 110:134–142. https://doi.org/10.1016/j.soilbio.2017.03.012

    Article  Google Scholar 

  117. 117.

    Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88. https://doi.org/10.1016/j.soilbio.2011.11.016

    Article  Google Scholar 

  118. 118.

    Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Knoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crop Res 121(3):430–440. https://doi.org/10.1016/j.fcr.2011.01.014

    Article  Google Scholar 

  119. 119.

    Suddick E, Six J (2013) An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci Total Environ 465:298–307. https://doi.org/10.1016/j.scitotenv.2013.01.094

    Article  Google Scholar 

  120. 120.

    Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85(9):1464–1471. https://doi.org/10.1016/j.chemosphere.2011.08.031

    Article  Google Scholar 

  121. 121.

    Yu L, Tang J, Zhang R, Wu Q, Gong M (2013) Effects of biochar application on soil methane emission at different soil moisture levels. Biol Fertil Soils 49(2):119–128. https://doi.org/10.1007/s00374-012-0703-4

    Article  Google Scholar 

  122. 122.

    Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. https://doi.org/10.1021/es903140c

    Article  Google Scholar 

  123. 123.

    Liu YX, Yang M, Wu YM, Wang HL, Chen YX, Wu WX (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939. https://doi.org/10.1007/s11368-011-0376-x

    Article  Google Scholar 

  124. 124.

    Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313. https://doi.org/10.1016/j.agee.2010.12.005

    Article  Google Scholar 

  125. 125.

    Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347. https://doi.org/10.1016/j.soilbio.2010.09.013

    Article  Google Scholar 

  126. 126.

    Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.016

    Article  Google Scholar 

  127. 127.

    Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018

    Article  Google Scholar 

  128. 128.

    Goudriaan (1995) Carbon sequestration in the biosphere. In: Beran MA (ed) Processes and prospects, vol 33. Springer, Heidelberg, Berlin, pp 3–18

    Google Scholar 

  129. 129.

    Zhang AF, Cui LQ, Pan GX, Li LQ, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, China. Agric Ecosyst Environ 139:469–475. https://doi.org/10.1016/j.agee.2010.09.003

    Article  Google Scholar 

  130. 130.

    Yuan Y, Yuan T, Wang D, Tang J, Zhou S (2013) Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresour Technol 144:115–120. https://doi.org/10.1016/j.biortech.2013.06.075

    Article  Google Scholar 

  131. 131.

    Matovic D (2011) Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy 36:2011–2016. https://doi.org/10.1016/j.energy.2010.09.031

    Article  Google Scholar 

  132. 132.

    Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42(11):4152–4158. https://doi.org/10.1021/es071361i

    Article  Google Scholar 

  133. 133.

    Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4):574–581. https://doi.org/10.1016/j.chemosphere.2009.06.053

    Article  Google Scholar 

  134. 134.

    Sheng Y, Zhu L (2018) Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci Total Environ 622–623:1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337

    Article  Google Scholar 

  135. 135.

    Fargione JE, Bassett S, Boucher T, Bridgham S, Conant RT, Cook-Patton S, Ellis PW, Falcucci A, Forqurean J, Gopalakrishna T, Gu H, Henderson B, Hurteau MD, Kroeger KD, Kroeger T, Lark TJ, Leavitt SM, Lomax G, McDonald R, Megonigal JP, Miteva DA, Richardson C, Sanderman S, Shoch D, Spawn SA, Veldman JW, Williams CA, Woodbury P, Zganjar C, Baranski M, Elias P, Houghton RA, Landis E, Mcglynn E, Ohler S, Schlesinger WH, Siikamaki JV, Sutton-Grier AE, Griscom BW (2018) Natural climate solutions for the United States. Sci Adv 4(11):eaat1869. https://doi.org/10.1126/sciadv.aat1869

    Article  Google Scholar 

  136. 136.

    Sun Z, Sänger A, Rebensburg P, Lentzsch P, Wirth S, Kaupenjohann M, Meyer-Aurich A (2017) Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Sci Total Environ 578:557–565. https://doi.org/10.1016/j.scitotenv.2016.10.230

    Article  Google Scholar 

  137. 137.

    Brassard P, Godbout S, Pelletier F, Raghavan V, Palacios JH (2018) Pyrolysis of switchgrass in an auger reactor for biochar production: a greenhouse gas and energy impacts assessment. Biomass Bioenergy 116:99–105. https://doi.org/10.1016/j.biombioe.2018.06.007

    Article  Google Scholar 

  138. 138.

    Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016

    Article  Google Scholar 

  139. 139.

    Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266

    Article  Google Scholar 

  140. 140.

    Minamino Y, Fujitake N, Suzuki T, Yoshitake S, Koizumi H, Tomotsune M (2019) Effect of biochar addition on leaflitter decomposition at soil surface during three years in a warmtemperate secondary deciduous forest, Japan. Sci Rep 9:16961. https://doi.org/10.1038/s41598-019-53615-2

    Article  Google Scholar 

  141. 141.

    Ko S, Choi JE, Yim H, Miyawaki J, Yoon S-H, Jeon Y-P (2019) Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis. Carbon Lett 29(3):307–317. https://doi.org/10.1007/s42823-019-00027-x

    Article  Google Scholar 

  142. 142.

    Choi JE, Ko S, Jeon YP (2019) Preparation of petroleum impregnating pitches from pyrolysis fuel oil using two-step heat treatments. Carbon Lett 29(4):369–376. https://doi.org/10.1007/s42823-019-00041-z

    Article  Google Scholar 

  143. 143.

    Hussain A, Raghavan V, Guiota SR, Tartakovsky B (2014) Electricity production from synthesis gas in a multi-electrodemicrobial fuel cell. J Chem Technol Biotechnol 89:499–507. https://doi.org/10.1002/jctb.4131

    Article  Google Scholar 

  144. 144.

    Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  145. 145.

    Huggins TM, Haeger A, Biffinger JC, Ren ZJ (2016) Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res 94:225–232. https://doi.org/10.1016/j.watres.2016.02.059

    Article  Google Scholar 

  146. 146.

    Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29(9):04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924

    Article  Google Scholar 

  147. 147.

    Cosentino I, Restuccia L, Ferro GA, Tulliani J-M (2018) Influence of pyrolysis parameters on the efficiency of the biochar as nanoparticles into cement-based composites. Proc Struct Integr 13:2132–2136. https://doi.org/10.1016/j.prostr.2018.12.194

    Article  Google Scholar 

  148. 148.

    Agrafioti E, Kalderis D, Diamadopoulos E (2014) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314. https://doi.org/10.1016/j.jenvman.2013.12.007

    Article  Google Scholar 

  149. 149.

    Hoslett J, Ghazal H, Ahmad D, Jouhara H (2019) Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Sci Total Environ 673:777–789. https://doi.org/10.1016/j.scitotenv.2019.04.085

    Article  Google Scholar 

  150. 150.

    Huggins TM, Pietron JJ, Wang H, Ren ZJ, Biffinger JC (2015) Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour Technol 195:147–153. https://doi.org/10.1016/j.biortech.2015.06.012

    Article  Google Scholar 

  151. 151.

    Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X (2017) Converting Ni-loaded biochars into supercapacitors: implication on the reuse of exhausted carbonaceous sorbents. Sci Rep 7:41523–41530. https://doi.org/10.1038/srep4152

    Article  Google Scholar 

Download references

Funding

The corresponding author would like to thank the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India under Women Scientists Scheme-A (WOS-A) (Grant no. SR/WOS-A/EA-37/2018) for providing financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sri Shalini S..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sri Shalini S., Palanivelu K., Ramachandran A. et al. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00604-5

Download citation

Keywords

  • Biochar
  • Biomass waste
  • Carbon
  • Climate change mitigation
  • Pyrolysis
  • Soil amendment