Skip to main content
Log in

Effects of coupling biofilm on the production of short-chain fatty acids (SCFAs) in sludge anaerobic fermentation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Short-chain fatty acids (SCFAs) could be recovered as valuable resources during sludge anaerobic fermentation. Addition of biofilm carriers might benefit the production of SCFAs by making microbial community more diverse or enriching functional microbial species. This study investigated the effects of three biofilm carriers, i.e. polyethylene (PE), polyurethane sponge (PUS), and granule-activated carbon (GAC), on the production of SCFAs during anaerobic fermentation of waste sludge. Experimental results revealed that the SCFAs production was improved at the presence of PE (2185.82 ± 61.73 mg/L) or PUS (1994.32 ± 110.99 mg/L), which were 1.4 and 1.27 times higher than that in the control test, respectively. The addition of GAC did not promote the SCFAs production, and furthermore, the concentration of SCFAs declined much faster than in other tests. High-throughput sequencing results showed that the microbial diversity in slurry was negatively related with the production of SCFAs. An increase in the relative abundance of SCFA consumers both in slurry and in biofilm might be an explanation for the effects of GAC. The findings suggest that the way a suitable biofilm carrier promotes the SCFAs production may be related with the enrichment of functional microbial species rather than a more diverse microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li X, Yuan Y, Jin R, Huang Y, Ma J (2019) High efficiency of excess sludge reduction and dewaterability using newly prepared alkaline ferrate pretreatment combined with anaerobic digestion. J Environ Manag 243:350–357. https://doi.org/10.1016/j.jenvman.2019.05.032

    Article  Google Scholar 

  2. Khan MA, Ngo HH, Guo WS, Liu YW, Zhou JL, Zhang J, Liang S, Ni BJ, Zhang XB, Wang J (2016) Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors. Bioresour Technol 214:816–825. https://doi.org/10.1016/j.biortech.2016.05.013

    Article  Google Scholar 

  3. Liu F, Tian Y, Ding Y, Li ZP (2016) The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation. Bioresour Technol 219:6–13. https://doi.org/10.1016/j.biortech.2016.07.030

    Article  Google Scholar 

  4. Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S, Arcos-Hernándz MV, Manusson P, Werker A (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour Technol 181:78–89. https://doi.org/10.1016/j.biortech.2015.01.046

    Article  Google Scholar 

  5. Huang L, Chen Z, Wen Q, Zhao L, Lee DJ, Yang L, Wang Y (2018) Insights into feast-famine polyhydroxyalkanoate (PHA)-producer selection: microbial community succession, relationships with system function and underlying driving forces. Water Res 131:167e176

    Article  Google Scholar 

  6. Sawatdeenarunat C, Sung S, Khanal SK (2017) Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour Technol 237:139–145. https://doi.org/10.1016/j.watres.2017.12.033

    Article  Google Scholar 

  7. Jin XD, Li XH, Zhao NN, Angelidaki I, Zhang YF (2017) Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res 111:74–80. https://doi.org/10.1016/j.watres.2016.12.045

    Article  Google Scholar 

  8. Chen Y, Jiang X, Xiao KK, Shen N, Zeng RJ, Zhou Y (2017) Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase:investigation on dissolved organic matter transformation and microbial community shift. Water Res 112:261–268. https://doi.org/10.1016/j.watres.2017.01.067

    Article  Google Scholar 

  9. Yu ZY, Wen XH, Xu ML, Qi M, Huang X (2012) Anaerobic digestibility of the waste activated sludge discharged from large-scale membrane bioreactors. Bioresour Technol 126:358–361. https://doi.org/10.1016/j.biortech.2012.09.024

    Article  Google Scholar 

  10. Lindeboom REF, Ding L, Weijma J, Plugge CM, van Lier JB (2014) Starch hydrolysis in autogenerative high pressure digestion: gelatinisation and saccharification as rate limiting steps. Biomass Bioenergy 71:256–265. https://doi.org/10.1016/j.biombioe.2014.07.031

    Article  Google Scholar 

  11. Yu GH, He PJ, Shao LM, Zhu YS (2008) Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Res 42:1925–1934. https://doi.org/10.1016/j.watres.2007.11.022

    Article  Google Scholar 

  12. Gong WJ, Liang H, Li WZ, Wang ZZ (2011) Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy 36:3572–3578. https://doi.org/10.1016/j.energy.2011.03.068

    Article  Google Scholar 

  13. Chaikasem S, Abeynayaka A, Visvanathan C (2014) Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreacto. Bioresour Technol 168:100–105. https://doi.org/10.1016/j.biortech.2014.04.023

    Article  Google Scholar 

  14. Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2017) Effect of biochar addition and initial pH on hydrogen production from first phase of two-phase anaerobic digestion of carbohydrates food waste. Energy Procedia 105:379–384. https://doi.org/10.1016/j.egypro.2017.03.329

    Article  Google Scholar 

  15. Wang G, Li Q, Gao X, Wang XC (2018) Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms. Bioresour Technol 250:812–820. https://doi.org/10.1016/j.biortech.2017.12.004

    Article  Google Scholar 

  16. Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrogen Energy 27:1167–1174. https://doi.org/10.1016/S0360-3199(02)00130-1

  17. Escudié R, Cresson R, Delgenès JP, Bernet N (2011) Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Res 45:1–10. https://doi.org/10.1016/j.watres.2010.07.081

    Article  Google Scholar 

  18. American Public Health Association, American Water Works Association, Water Environment Federation (2012) Standard methods for the examination of water and wastewater, 22th ed. Washington DC

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1515/bchm2.1951.286.1-6.270

    Article  Google Scholar 

  20. Grandy AS, Erich MS, Porter GA (2000) Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biol Biochem 32(5):725–727. https://doi.org/10.1016/S0038-0717(99)00203-5

    Article  Google Scholar 

  21. Sun YX, Liu Y, Zhang YH, Huang Y, Wang L et al (2019) Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion. Chem Eng J 374:1364–1372. https://doi.org/10.1016/j.cej.2019.05.159

    Article  Google Scholar 

  22. Yang DH, Dai XH, Song L, Dai LL, Dong B (2019) Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability. Bioresour Technol 290:121753. https://doi.org/10.1016/j.biortech.2019.121753

    Article  Google Scholar 

  23. Zhang DD, Jiang HL, Chang J, Sun J, Tu WM, Wang H (2019) Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresour Technol 279:92–100. https://doi.org/10.1016/j.biortech.2019.01.077

    Article  Google Scholar 

  24. Liu XR, Xu QX, Wang DB, Yang Q, Wu YX, Yang JN (2019) Enhanced short-chain fatty acids from waste activated sludge by heat-CaO2 advanced thermal hydrolysis pretreatment: parameters optimization, mechanisms and implications. ACS Sustain Chem Eng 7:3544–3555. https://doi.org/10.1021/acssuschemeng.8b05799

    Article  Google Scholar 

  25. Li XK, Liu GG, Liu SL, Ma KL, Meng LW (2018) The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. J Environ Manag 223:85–91. https://doi.org/10.1016/j.jenvman.2018.06.002

    Article  Google Scholar 

  26. Xie J, Chen Y, Duan X, Feng L, Yan Y, Wang F, Zhang XZ, Zhang ZG, Zhou Q (2019) Activated carbon promotes short-chain fatty acids production from algae during anaerobic fermentation. Sci. Total Environ 658:1131–1138. https://doi.org/10.1016/j.scitotenv.2018.12.280

    Article  Google Scholar 

  27. Wang XL, Zhao JW, Yang Q, Sun J, Peng C, Chen F, Xu QX, Wang S, Wang DB, Li XM, Zeng GM (2017) Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. Bioresour Technol 246:234–241. https://doi.org/10.1016/j.biortech.2017.07.051

    Article  Google Scholar 

  28. Liu XR, Xu QX, Wang DB, Wu YX, Yang Q (2019) Unveiling the mechanisms of how cationic polyacrylamide affects shor-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Res 155:142–151. https://doi.org/10.1016/j.watres.2019.02.036

    Article  Google Scholar 

  29. Placido J, Zhang Y (2018) Production of volatile fatty acids from slaughterhouse blood by mixed-culture fermentation. Biomass convers. Biorefin 8(3):621–634. https://doi.org/10.1007/s13399-018-0313-y

    Google Scholar 

  30. Zheng X, Su Y, Li X, Xiao ND, Wang DB, Chen YG (2013) Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Environ Sci Technol 47(9):4262–4268. https://doi.org/10.1021/es400210v

    Article  Google Scholar 

  31. Xie J, Chen YZ, Duan X, Feng LY, Yan YY, Wang F, Zhang XZ, Zhang ZG, Zhou Q (2019) Activated carbon promotes short-chain fatty production from algae during anaerobic fermentation. Sci. Total Environ 658:1131–1138. https://doi.org/10.1016/j.scitotenv.2018.12.280

    Article  Google Scholar 

  32. Chen YG, Huang HN, Zheng X (2019) Fate of sulfonamide resistance genes during sludge anaerobic fermentation: roles of sludge components and fermentation pHs. Bioresour Technol 289:121636. https://doi.org/10.1016/j.biortech.2019.121636

    Article  Google Scholar 

  33. Nelson MC, Morrison M, Yu ZT (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102(4):3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119

    Article  Google Scholar 

  34. Luo JY, Chen YG, Feng LY (2016) Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen. Environ Sci Technol 50(13):6921–6929. https://doi.org/10.1021/acs.est.6b00003

    Article  Google Scholar 

  35. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41(7):1554–1568. https://doi.org/10.1016/j.watres.2006.12.036

    Article  Google Scholar 

  36. Liu HB, Wang YY, Yin B, Zhu YF, Fu B, Liu H (2016) Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Bioresour Technol 218:92–100. https://doi.org/10.1016/j.biortech.2016.06.077

    Article  Google Scholar 

  37. Wang YL, Wang DB, Liu YW, Wang QL, Chen F, Yang Q, Li XM, Zeng GM, Li HL (2017) Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Res 127:150–161. https://doi.org/10.1016/j.watres.2017.09.062

    Article  Google Scholar 

  38. Yang JY, Martínez I, Walter J, Keshavarzian A, Rose DJ (2013) In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23:74–81. https://doi.org/10.1016/j.anaerobe.2013.06.012

    Article  Google Scholar 

  39. Cibis KG, Gneipel A, König H (2016) Isolation of acetic, propionic and butyric acidforming bacteria from biogas plants. J Biotechnol 220:51–63. https://doi.org/10.1016/j.jbiotec.2016.01.008

    Article  Google Scholar 

  40. Harms C, Schleicher A, Collins MD, Andreesen JR (1998) Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism. Int. J. Syst. Evol. Microbiol 48(3):983–993. https://doi.org/10.1099/00207713-48-3-983

    Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51878046) and the China Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2017ZX07102-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhu, X., Zhao, X. et al. Effects of coupling biofilm on the production of short-chain fatty acids (SCFAs) in sludge anaerobic fermentation. Biomass Conv. Bioref. 10, 725–734 (2020). https://doi.org/10.1007/s13399-019-00576-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00576-1

Keywords

Navigation