Skip to main content
Log in

Methane productivity evaluation of an invasive wetland plant, common reed

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study aims to investigate the potential of substrate for producing biogas from common reed (Phragmites australis), a perennial grass, and provide the techniques to select optimal and reasonable materials with high methane production. By determining the parameters such as chemical oxygen demand (COD), volatile solids (VS), and percentage of element chemicals, carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S) of raw materials henceforth through the TBMP (theoretical biochemical methane potential) via calculations give the maximum methane potential of particular available in feedstock and present by methane yield per unit of mass of feedstock (mlCH4/gVS). In this study, the results were obtained from TBMPThEC and TBMPThCOD that were highest at 460.890 mlCH4/gVS and 130.88 mlCH4/gVS, respectively. The results showed that based on COD calculations, the results were consistent with the ability to create methane in the experiment and based on elemental compositions showed that the further potential to produce methane of feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TS:

total solid

VS:

volatile solid

COD:

chemical oxygen demand

GHG:

greenhouse gas

TBMP:

theoretical biochemical methane potential

TBMP(ThEC) :

theoretical production of elemental compositions

TBMP(ThCOD) :

theoretical production of COD

EAD:

elemental analysis determination

VFA:

volatile fatty acids

STP:

standard temperature and pressure

CR:

common reed

References

  1. Wannapokin A, Ramaraj R, Whangchai K, Unpaprom Y (2017) Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech 8:123

    Article  Google Scholar 

  2. Chuanchai A, Ramaraj R (2018) Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio-fertilizer. Biotech 8(3):151

    Google Scholar 

  3. Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112(2):171–177

    Article  Google Scholar 

  4. Bhuyar P, Ab Rahim MH, Yusoff MM, Maniam GP, Govindan N (2019) A selective microalgae strain for biodiesel production in relation to higher lipid profile. Maejo Int J Energ Environ Comm 1(1):8–14

    Google Scholar 

  5. Manmai M, Bautista K, Unpaprom Y, Ramaraj R (2019) Optimization of combined pre-treatments on sugarcane leaves for bioethanol production. Maejo Int J Energ Environ Comm 1(1):30–39

    Google Scholar 

  6. Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57:359–367

    Article  Google Scholar 

  7. Uçkun KE, Stamatelatou K, Antonopoulou G, Lyberatos G (2016) Production of biogas via anaerobic digestion. In: Handbook of biofuels production: processes and technologies: second edition, pp 259–301

    Google Scholar 

  8. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28

    Article  Google Scholar 

  9. Unpaprom Y, Intasaen O, Yongphet P, Ramaraj R (2015) Cultivation of microalga Botryococcus braunii using red Nile tilapia effluent medium for biogas production. J Ecol Environ Sci 3(2):58–65

    Google Scholar 

  10. Ramaraj R, Dussadee N (2015) Biological purification processes for biogas using algae cultures: a review. J Renew Sustain Energy 4:20–32

    Article  Google Scholar 

  11. Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68:1193–1204

    Article  Google Scholar 

  12. Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354

    Article  Google Scholar 

  13. Kaewdiew J, Ramaraj R, Koonaphapdeelert S, Dussadee N (2019) Assessment of the biogas potential from agricultural waste in northern Thailand. Maejo Int J Energ Environ Comm 1(1):40–47

    Google Scholar 

  14. Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. J Waste Manag 33(12):2653–2658

    Article  Google Scholar 

  15. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717

    Article  Google Scholar 

  16. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42(1):35–53

    Article  Google Scholar 

  17. Seppala M, Paavola T, Lehtomäki A, Rintala J (2009) Biogas production from boreal herbaceous grasses – specific methane yield and methane yield per hectare. Bioresour Technol 100(12):2952–2958

    Article  Google Scholar 

  18. Bosch MW, Tamminga S, Post G, Leffering CP, Muylaert JM (1992) Influence of stage of maturity of grass silages on digestion processes in dairy cows. 1. Composition, nylon bag degradation rates, fermentation characteristics, digestibility and intake. Livest Prod Sci 32(3):245–264

    Article  Google Scholar 

  19. Bruinenberg MH, Valk H, Korevaar H, Struik PC (2002) Factors affecting digestibility of temperate forages from seminatural grasslands: a review. Grass Forage Sci 57(3):292–301

    Article  Google Scholar 

  20. Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306

    Article  Google Scholar 

  21. Brix H, Cizkova H (2001) Introduction Phragmites-dominated wetlands, their functions and sustainable use. Aquat Bot 69:87–88

    Article  Google Scholar 

  22. Kask U, Kask L, Link S (2013) Combustion characteristics of reed and its suitability as a boiler fuel. Mires Peat 13(5):1–10

    Google Scholar 

  23. Brix H, Ye S, Laws EA, Sun D, Li G, Ding X, Pei S (2014) Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecol Eng 73:760–769

    Article  Google Scholar 

  24. Shuai W, Chen N, Li B, Zhou D, Ga J (2016) Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy 92:40–47

    Article  Google Scholar 

  25. Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113

    Article  Google Scholar 

  26. Dunbabin JS, Bowmer KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Environ 111:151–168

    Article  Google Scholar 

  27. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  28. AOAC (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg, Maryland

    Google Scholar 

  29. Vu PT, Unpaprom Y, Ramaraj R (2018) Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Bioresour Technol 247:125–130

    Article  Google Scholar 

  30. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem Res 44(3):550–552

    Article  Google Scholar 

  31. O’Rourke JT (1968) Kinetics of anaerobic treatment at reduced temperatures. PhD thesis, Stanford University, California

  32. Boyle WC (1976) Energy recovery from sanitary landfills – a review. In: Microbial energy conversion. Pergamon Press, Oxford, pp 119–138

    Google Scholar 

  33. Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resource-Efficient Technol 2(3):143–147

    Article  Google Scholar 

  34. Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5(1):14–21

    Article  Google Scholar 

  35. Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098

    Article  Google Scholar 

  36. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129

    Article  Google Scholar 

  37. Patuzzi F, Mimmo T, Cesco S, Gasparella A, Baratieri M (2013) Common reeds (Phragmites australis) as sustainable energy source: experimental and modelling analysis of torrefaction and pyrolysis processes. GCB Bioenergy 5(4):367–374

    Article  Google Scholar 

  38. Baute K, Van Eerd LL, Robinson DE, Sikkema PH, Mushtaq M, Gilroyed BH (2018) Comparing the biomass yield and biogas potential of Phragmites australis with Miscanthus X giganteus and Panicum virgatum grown in Canada. Energies 11(9):2198

    Article  Google Scholar 

  39. Gopalan P, Jensen PD, Batstone DJ (2013) Biochemical methane potential of beef feedlot manure: impact of manure age and storage. J Environ Qual 42(4):1205

    Article  Google Scholar 

  40. Li Y, Zhang R, Chen C, Liu G, He Y, Liu X (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol 149:406–412

    Article  Google Scholar 

  41. Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177(4):985–995

    Article  Google Scholar 

  42. Owens JM, Chynoweth D (1993) Biochemical methane potential of MSW components. Water Sci Technol 27(2):1–14

    Article  Google Scholar 

  43. Angelidaki I, Ahring BK (1992) Effects of free long chain fatty acids on thermophilic anaerobic digestion. Appl Biochem Biotechnol 37:808–812

    Google Scholar 

  44. Browne JD, Allen E, Murphy JD (2013) Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ Technol 34(13–14):2027–2038

    Article  Google Scholar 

  45. Feng L, Li Y, Chen C, Liu X, Xiao X, Ma X, Liu G (2013) Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. Bioresources 8(2):2487–2498

    Article  Google Scholar 

  46. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744

    Article  Google Scholar 

  47. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34:491–500

    Article  Google Scholar 

  48. Szijarto N, Kadar Z, Varga E, Thomsen AB, Costa-Ferreira M, Réczey K (2009) Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Appl Biochem Biotechnol 155:386–396

    Article  Google Scholar 

  49. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshprabu Ramaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tran, G., Unpaprom, Y. & Ramaraj, R. Methane productivity evaluation of an invasive wetland plant, common reed. Biomass Conv. Bioref. 10, 689–695 (2020). https://doi.org/10.1007/s13399-019-00451-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00451-z

Keywords

Navigation