Skip to main content
Log in

Abstract

We introduce generalized hypergeometric Bernoulli numbers for Dirichlet characters. We study their properties, including relations, expressions and determinants. At the end in Appendix we derive first few expressions of these numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agoh, T.: Shortened recurrence relations for generalized Bernoulli numbers and polynomials. J. Number Theory 176, 149–173 (2017)

    Article  MathSciNet  Google Scholar 

  2. Aoki, M., Komatsu, T., Panda, G.K.: Several properties of hypergeometric Bernoulli numbers. J. Inequal. Appl. 113, 24 (2019)

    MathSciNet  Google Scholar 

  3. Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli numbers and zeta functions. With an appendix by Don Zagier. Springer Monographs in Mathematics. Springer, Tokyo (2014)

    MATH  Google Scholar 

  4. Chen, K.-W., Eie, M.: A note on generalized Bernoulli numbers. Pac. J. Math. 199, 41–59 (2001)

    Article  MathSciNet  Google Scholar 

  5. Glaisher, J.W.L.: Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants. Messenger (2) 6, 49–63 (1875)

    MATH  Google Scholar 

  6. Hassen, A., Nguyen, H.D.: Hypergeometric Bernoulli polynomials and Appell sequences. Int. J. Number Theory 4, 767–774 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hassen, A., Nguyen, H.D.: Hypergeometric zeta functions. Int. J. Number Theory 6, 99–126 (2010)

    Article  MathSciNet  Google Scholar 

  8. Howard, F.T.: A sequence of numbers related to the exponential function. Duke Math. J. 34, 599–615 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Howard, F.T.: Some sequences of rational numbers related to the exponential function. Duke Math. J. 34, 701–716 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Hu, S., Kim, M.-S.: On hypergeometric Bernoulli numbers and polynomials. Acta Math. Hung. 154(1), 134–146 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hu, S., Kim, M.-S.: Two closed forms for the Apostol–Bernoulli polynomials. Ramanujan J. 46, 103–117 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hu, S., Komatsu, T.: Explicit expressions for the related numbers of higher order Appell polynomials. Quaest. Math. 43(8), 1019–1029 (2020)

    Article  MathSciNet  Google Scholar 

  13. Kamano, K.: Sums of products of hypergeometric Bernoulli numbers. J. Number Theory 130, 2259–2271 (2010)

    Article  MathSciNet  Google Scholar 

  14. Komatsu, T.: Hypergeometric Cauchy numbers. Int. J. Number Theory 9, 545–560 (2013)

    Article  MathSciNet  Google Scholar 

  15. Komatsu, T., Yuan, P.: Hypergeometric Cauchy numbers and polynomials. Acta Math. Hung. 153, 382–400 (2017)

    Article  MathSciNet  Google Scholar 

  16. Komatsu, T., Zhang, W.: Several properties of multiple hypergeometric Euler numbers. Tokyo J. Math. 42(2), 551–570 (2019)

    Article  MathSciNet  Google Scholar 

  17. Merca, M.: Bernoulli numbers and symmetric functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(1), 16 (2020)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, H.D.: Sums of products of hypergeometric Bernoulli polynomials, MAA-NJ Section—Spring Meeting, Middle Country College, NJ (2010)

  19. Washington, L.C.: Introduction to Cyclotomic Fields, Second Edition, GTM 83. Springer, New York (1997)

    Book  Google Scholar 

  20. Zhu, L.: New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(2), 13 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees for their precious comments and advices. This work has been partly done when the second author (T.K.) visited Harish-Chandra Research Institute in February 2020, where the first author (K. C.) was working before moving to his current institute. T. K. thanks K. C. for the warm hospitality of the institute. This work was initiated from a hint by Professor Miho Aoki of Shimane University. Both authors thank her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Komatsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We derive first few values of \(B_{N,n,\chi }\):

$$\begin{aligned} B_{N,0,\chi }&=\frac{S_0}{f^N}\,,\\ B_{N,1,\chi }&=-\frac{S_0}{(N+1)f^{N-1}}+\frac{S_1}{f^N}\,,\\ B_{N,2,\chi }&=\frac{2 S_0}{(N+1)^2(N+2)f^{N-2}}-\frac{2 S_1}{(N+1)f^{N-1}}+\frac{S_2}{f^N}\,,\\ B_{N,3,\chi }&=\frac{3!(N-1)S_0}{(N+1)^3(N+2)(N+3)f^{N-3}}+\frac{3! S_1}{(N+1)^2(N+2)f^{N-2}}-\frac{3 S_2}{(N+1)f^{N-1}}+\frac{S_3}{f^N}\,,\\ B_{N,4,\chi }&=\frac{4!(N^3-N^2-6 N+2)S_0}{(N+1)^4(N+2)^2(N+3)(N+4)f^{N-4}}+\frac{4!(N-1)S_1}{(N+1)^3(N+2)(N+3)f^{N-3}}\\&\qquad +\frac{12 S_2}{(N+1)^2(N+2)f^{N-2}}-\frac{4 S_3}{(N+1)f^{N-1}}+\frac{S_4}{f^N}\,. \end{aligned}$$

Now

$$\begin{aligned} B_{N,0}&=1\,,\\ B_{N,1}&=-\frac{1}{N+1}\,,\\ B_{N,2}&=\frac{2}{(N+1)^2(N+2)}\,,\\ B_{N,3}&=\frac{3!(N-1)}{(N+1)^3(N+2)(N+3)}\,,\\ B_{N,4}&=\frac{4!(N^3-N^2-6 N+2)}{(N+1)^4(N+2)^2(N+3)(N+4)}\,. \end{aligned}$$

From [2] we can see that,

$$\begin{aligned} B_{N,n,\chi }=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{S_{n-k}B_{N,k}}{f^{N-k}}\,, \end{aligned}$$

as shown in Corollary 1.

When \(N=1\) and \(\chi \) is not the trivial character, as \(S_0=0\), we find that

$$\begin{aligned} B_{1,0,\chi }&=0\,,\\ B_{1,1,\chi }&=\frac{S_1}{f}\,,\\ B_{1,2,\chi }&=-S_1+\frac{S_2}{f}\,,\\ B_{1,3,\chi }&=\frac{f S_1}{2}-\frac{3 S_2}{2}+\frac{S_3}{f}\,,\\ B_{1,4,\chi }&=f S_2-2 S_3+\frac{S_4}{f}\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Komatsu, T. Generalized hypergeometric Bernoulli numbers. RACSAM 115, 101 (2021). https://doi.org/10.1007/s13398-021-01042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01042-2

Keywords

Mathematics Subject Classification

Navigation