1 Preliminaries

We say that a Banach space X is non-square if for any x and y from S(X) (the unit sphere of X), we have \(\min (\Vert \frac{x-y}{2}\Vert ,\Vert \frac{x+y}{2}\Vert )<1\). A Banach space X is said to be locally uniformly non-square if for any \(x\in S(X)\) there exists \(\delta =\delta (x)\in (0,1)\) such that \(\min (\Vert \frac{x-y}{2}\Vert ,\Vert \frac{x+y}{2}\Vert )\le 1-\delta \) for any \(y\in B(X)\) (the unit ball of X). Finally, we say that a Banach space X is uniformly non-square if there exists \(\delta \in (0,1)\) such that \(\min (\Vert \frac{x-y}{2}\Vert ,\Vert \frac{x+y}{2}\Vert )\le 1-\delta \) for any \(x, y\in B(X)\).

Recall that uniform non-squareness of Banach spaces was defined by James as a geometric property which implies super-reflexivity (see [9, 10]). Hence, knowing that a Banach space possesses this property, even without any characterization of its dual space, we can infer that it is super-reflexive, and so reflexive. Additionally, as García-Falset, Llorens-Fuster and Mazcu\(\tilde{\mathrm {n}}\)an-Navarro have shown, uniformly non-square Banach spaces possess the fixed-point property (see [5]). Therefore, it is natural and interesting to ask about criteria of non-squareness of various well-known classes of Banach spaces. The purpose of this paper is to complete the study started in [3] (see also [2]).

Let \(L^{0}=L^{0}([0,\gamma ))\) be the space of all (equivalence classes of) Lebesgue measurable real-valued functions defined on the interval \([0,\gamma )\), where \(\gamma \le \infty \). For any \(x,y\in L^{0}\), we write \(x\le y\) if \(x(t)\le y(t)\) almost everywhere with respect to the Lebesgue measure m on the interval \([0,\gamma )\).

Given any \(x\in L^{0}\), we define its distribution function \(\mu _{x}:[0,+\infty )\rightarrow [0,\gamma ]\) by

$$\begin{aligned} \mu _{x}(\lambda )=m\{t\in [0,\gamma ):|x(t)|>\lambda \} \end{aligned}$$

(see [1, 14, 15]) and the non-increasing rearrangement \(x^{*}:[0,\gamma )\rightarrow [0,\infty ]\) of x as

$$\begin{aligned} x^{*}(t)=\inf \{\lambda \ge 0:\mu _{x}(\lambda )\le t\} \end{aligned}$$

(under the convention \(\inf \emptyset =\infty \)). We say that two functions \(x,y\in L^{0}\) are equimeasurable if \(\mu _{x}(\lambda )=\mu _{y}(\lambda )\) for all \(\lambda \ge 0\). Then we obviously have \(x^{*}=y^{*}\).

A Banach space \(E=(E,\le ,\Vert \cdot \Vert )\), where \(E\subset L^{0}\), is said to be a Köthe space if the following conditions are satisfied:

  • \(\mathrm{(i)}\) if \(x\in E\), \(y\in L^{0}\) and \(|y|\le |x|\), then \(y\in E\) and \(\Vert y\Vert \le \Vert x\Vert \),

  • \(\mathrm{(ii)}\) there exists a function x in E that is strictly positive on the whole \([0,\gamma )\).

Recall that the Köthe space E is called a symmetric space if E is rearrangement invariant in the sense that if \(x\in E\), \(y\in L^{0}\) and \(x^{*}=y^{*}\), then \(y\in E\) and \(\Vert x\Vert =\Vert y\Vert \). For basic properties of symmetric spaces we refer to [1, 14, 15].

In the whole paper \(\varphi \) will denote an Orlicz function, that is, \(\varphi :[-\infty ,\infty ]\rightarrow [0,\infty ]\) (our definition is extended from R into \(R^{e}\) by assuming \(\varphi (-\infty )=\varphi (\infty )=\infty \)) and \(\varphi \) is convex, even, vanishing and continuous at zero, left continuous on \((0,\infty )\) and not identically equal to zero on \((-\infty ,\infty )\). Let us denote

$$\begin{aligned} a_{\varphi }=\sup \{u\ge 0:\varphi (u)=0\} \quad \mathrm{and}\quad b_{\varphi }=\sup \{u\ge 0:\varphi (u)<\infty \} \end{aligned}$$

and

$$\begin{aligned} \beta =\sup \left\{ u\ge 0:\varphi \left( \frac{u}{2}\right) =\frac{1}{2}\varphi \left( u\right) \right\} . \end{aligned}$$
(1)

Let us note that if \(a_{\varphi }>0\), then \(\beta =a_{\varphi }\), while the left-continuity of \(\varphi \) on \((0,\infty )\) is equivalent to the fact that \(\lim _{u\rightarrow (b_{\varphi })^{-}}\varphi (u)=\varphi (b_{\varphi })\).

Recall that an Orlicz function \(\varphi \) satisfies the condition \(\varDelta _{2}\) for all \(u\in {\mathbb {R}}\) (\(\varphi \in \varDelta _{2}({\mathbb {R}})\), for short) if there exists a constant \(K>0\) such that the inequality

$$\begin{aligned} \varphi (2u)\le K\varphi (u) \end{aligned}$$
(2)

holds for any \(u\in {\mathbb {R}}\) (then we have \(a_{\varphi }=0\) and \(b_{\varphi }=\infty \)). Analogously, we say that an Orlicz function \(\varphi \) satisfies the condition \(\varDelta _{2}\) at infinity (\(\varphi \in \varDelta _{2}(\mathbb {\infty })\), for short) if there exist a constant \(K>0\) and a constant \(u_{0}\ge 0\) such that \(\varphi (u_{0})<\infty \) and inequality (2) holds for any \(u\ge u_{0}\) (then we obtain \(b_{\varphi }=\infty \)).

For any Orlicz function \(\varphi \) we define its complementary function in the sense of Young by the formula

$$\begin{aligned} \psi (u)=\sup _{v>0}\{|u|v-\varphi (v)\} \end{aligned}$$
(3)

for all \(u\in {\mathbb {R}}\). It is easy to show that \(\psi \) is also an Orlicz function.

Let \(\omega :[0,\gamma )\rightarrow {\mathbb {R}}_{+}\) be a non-increasing and locally integrable function, which will be called a weight function. Define

$$\begin{aligned} \alpha&=\sup \left\{ t\ge 0:\omega \left( t\right) >0\right\} , \\ \gamma _{0}&=\sup \left\{ t\ge 0:\omega \text { is constant on }(0,t)\right\} . \end{aligned}$$

Recall that Orlicz–Lorentz spaces—a natural generalization of Orlicz and Lorentz spaces—were introduced at the beginning of the 1990s [11, 12, 16,17,18]. These investigations spurred further investigations of Orlicz–Lorentz spaces.

Given an Orlicz function \(\varphi \) and a weight function \(\omega \), we define a convex modular \(I_{\varphi ,\omega }:L^{0}\rightarrow {\mathbb {R}}_{+}^{e}=[0,\infty ]\) by the formula

$$\begin{aligned} {I_{\varphi ,\omega }\left( x\right) }\mathrel {\mathop :}=\int _{0}^{\gamma } \varphi (x^{*}(t))\omega (t)dt. \end{aligned}$$
(4)

The modular space

$$\begin{aligned} {\varLambda _{\varphi ,\omega }}={\varLambda _{\varphi ,\omega }([0,\gamma ))}=\{x\in L^{0}:{I_{\varphi ,\omega }\left( \lambda x\right) }<\infty \,\, \mathrm{for}\,\, \mathrm{some}\,\, \lambda >0\}, \end{aligned}$$

generated by the modular \(I_{\varphi ,\omega }\), is called the Orlicz–Lorentz function space. Since the modular unit ball \(\{x\in L^{0}:I_{\varphi ,\omega }(x)\le 1\}\) is an absolutely convex and absorbing subset of \(\varLambda _{\varphi ,\omega }([0,\gamma ))\), its Minkowski functional \(\Vert \cdot \Vert _{\varphi ,\omega }\), defined by

$$\begin{aligned} {\Vert x\Vert _{\varphi ,\omega }}=\inf \{\lambda >0:{I_{\varphi ,\omega } \left( x/\lambda \right) }\le 1\}, \end{aligned}$$

is a seminorm in \(\varLambda _{\varphi ,\omega }([0,\gamma ))\). It is easy to check that, thanks to the condition \(\varphi (u)\rightarrow \infty \) as \(u\rightarrow \infty \), it is a norm in \(\varLambda _{\varphi ,\omega }([0,\gamma ))\), called the Luxemburg norm.

In our investigations we apply the results concerning the monotonicity properties of Lorentz function spaces first presented in [8] and [4]. Let us recall that a Lorentz function space \(\varLambda _{\omega }\) is defined by the formula

$$\begin{aligned} \varLambda _{\omega }=\varLambda _{\omega }([0,\gamma ))=\left\{ x\in L^{0}:\Vert x\Vert _{\omega }=\int _{0}^{\gamma }x^{*}(t)\omega (t)dt<\infty \right\} . \end{aligned}$$

A Banach lattice \(E=(E,\le ,\Vert \cdot \Vert )\) is said to be locally uniformly monotone, whenever for any \(x\in (E)_{+}\) (the positive cone of E) with \(\Vert x\Vert =1\) and any \(\varepsilon \in (0,1)\) there is \(\delta (x, \varepsilon )\in (0,1)\) such that the conditions \(0\le y\le x\) and \(\Vert y\Vert \ge \varepsilon \) imply that \(\Vert x-y\Vert \le 1-\delta (x,\varepsilon )\).

Theorem 1

([4], Proposition 4.1) The Lorentz function space \(\varLambda _{\omega }\) is locally uniformly monotone if and only if \(\omega \) is positive on \([0,\gamma )\) and \(\int _{0}^{\gamma }\omega (t)dt=\infty \) whenever \(\gamma =\infty \).

In our investigations we will also apply Lemma 1. It is proved analogously as in the case of Orlicz spaces using the convexity of the modular \(I_{\varphi ,\omega }\) (cf. also [13] for a more general case).

Lemma 1

Suppose that an Orlicz function \(\varphi \) satisfies a suitable condition \(\varDelta _{2}\), that is, \(\varphi \in \varDelta _{2}({\mathbb {R}})\) if \(\gamma =\infty \) and \(\int _{0}^{\infty }\omega (t)dt=\infty \), and \(\varphi \in \varDelta _{2}(\mathbb \infty )\) otherwise.

Then for any \(\varepsilon \in (0,1)\) there exists \(\delta =\delta (\varepsilon )\in (0,1)\) such that \(\Vert x\Vert \le 1-\delta \) for any \(x\in \varLambda _{\varphi ,\omega }\) whenever \(I_{\varphi ,\omega }(x)\le 1-\varepsilon \).

In particular, for any \(x\in \varLambda _{\varphi ,\omega }\), we then have \(\Vert x\Vert =1\) if and only if \(I_{\varphi ,\omega }\left( x\right) =1\).

2 Results

We start with the following

Theorem 2

Let \(\gamma =\infty \). Then the Orlicz–Lorentz function space \(\varLambda _{\varphi ,\omega }\) is locally uniformly non-square if and only if \(\int _{0}^{\infty }\omega (t)dt=\infty \), \(\varphi \in \varDelta _{2}({\mathbb {R}})\) and \(\varphi (\frac{u}{2})<\frac{1}{2}\varphi (u)\) for every \(u>0\).

Proof. Sufficiency. Let us fix \(x\in S(\varLambda _{\varphi ,\omega })\). Since \(\varphi \in \varDelta _2({\mathbb {R}})\), by Lemma 1 it is enough to show that there exists \(\delta \in (0, 1)\) such that \(\min \left( I_{\varphi ,\omega }\left( \frac{x-y}{2}\right) , I_{\varphi ,\omega }\left( \frac{x+y}{2}\right) \right) \le 1-\delta \) for every \(y\in B\left( \varLambda _{\varphi ,\omega }\right) \). There exist \(t_1, t_2\) such that \(0\le t_1<t_2<\infty \), \(0<x^{*}(t_2)\le x^{*}(t_1)<\infty \) and

$$\begin{aligned} \int _{t_1}^{t_2}\varphi (x^{*}(t))\omega (t)dt\ge \xi \end{aligned}$$
(5)

for some \(\xi \in (0, 1]\). Without loss of generality we may assume that \(x^{*}(s)>x^{*}(t)>x^{*}(w)\) for all \(s\in (0, t_1), t\in (t_1, t_2)\) and \(w>t_2\) if \(t_1>0\), and \(x^{*}(t)>x^{*}(w)\) for all \(t\in (t_1, t_2)\) and \(w>t_2\), otherwise. By [14], property \(7^{\circ }\), page 64 there exist sets \(e_{t_1}\) and \(e_{t_2}\) with \(m(e_{t_1})=t_1\), \(m(e_{t_2})=t_2\),

$$\begin{aligned} \int _{0}^{t_1} x^{*}(t)dt=\int _{e_{t_1}} \left| x(t)\right| dt \quad \mathrm{and}\quad \int _{0}^{t_2} x^{*}(t)dt=\int _{e_{t_2}} \left| x(t)\right| dt \end{aligned}$$

(in the case \(t_1=0\) we have \(e_{t_1}=\emptyset \)), whence it follows that \(e_{t_1}\subsetneqq e_{t_2}\). Moreover, by the properties of the function \(\varphi \), we get

$$\begin{aligned} \varphi \left( \frac{1}{2}u\right) \le \frac{1-\eta _{x}}{2}\varphi \left( u\right) \end{aligned}$$

for \(u\in \left[ x^{*}\left( t_1\right) , x^{*}\left( t_2\right) \right] \), where \(\eta _x \in (0, 1)\). For any \(y\in B\left( \varLambda _{\varphi , \omega }\right) \) we define

$$\begin{aligned} B_1=\Big \{ t \in e_{t_2}{\setminus } e_{t_1}: x(t) y(t) \ge 0 \Big \} {,} \\ B_2=\Big \{ t \in e_{t_2}{\setminus } e_{t_1}: x(t) y(t) < 0 \Big \}. \end{aligned}$$

By the inequality (5), we obtain \(I_{\varphi , \omega } \left( x \chi _{e_{t_2}{\setminus } e_{t_1}}\right) \ge \xi \), whence \(I_{\varphi , \omega } \left( x \chi _{B_1}\right) \ge \frac{\xi }{2}\) or \(I_{\varphi , \omega } \left( x \chi _{B_2}\right) \ge \frac{\xi }{2}\). Let us assume that the first inequality holds. Then we have

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right)&\le \varphi \left( \frac{\max \Big \{\vert x(t)\vert ,\vert y(t) \vert \Big \}}{2}\right) \le \varphi \left( \frac{x(t)}{2}\right) +\varphi \left( \frac{y(t)}{2}\right) \\&\le \frac{1}{2}\varphi \left( x(t)\right) -\frac{\eta _{x}}{2}\varphi \left( x(t)\right) +\frac{1}{2}\varphi \left( y(t)\right) \end{aligned}$$

for m-a.e. \(t \in B_1\). Consequently,

$$\begin{aligned} \varphi \circ \left( \frac{x-y}{2}\right) \le \frac{1}{2}\varphi \circ y + \frac{1}{2}\varphi \circ x - \frac{\eta _x}{2}\varphi \circ x \chi _{B_1}. \end{aligned}$$

By the local uniform monotonicity of the Lorentz space \(\varLambda _{\omega }\) we get

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x-y}{2}\right)&=\left\| \varphi \circ \left( \frac{x-y}{2}\right) \right\| _{\omega } \le \left\| \frac{1}{2}\varphi \circ y+\frac{1}{2}\varphi \circ x-\frac{\eta _x}{2}\varphi \circ x\chi _{B_1} \right\| _{\omega } \\&\le \frac{1}{2}\Vert \varphi \circ y\Vert _{\omega }+\frac{1}{2}\Vert \varphi \circ x-\eta _x\varphi \circ x\chi _{B_1}\Vert _{\omega } \le 1-\frac{1}{2}\delta \left( \varphi \circ x,\frac{\xi \cdot \eta _{x}}{2}\right) , \end{aligned}$$

where \(\delta \left( \varphi \circ x,\frac{\xi \cdot \eta _{x}}{2}\right) \) is a constant from the definition of local uniform monotonicity of the Lorentz space \(\varLambda _{\omega }\) corresponding to \(\varphi \circ x\) and \(\varepsilon =\frac{\xi \cdot \eta _{x}}{2}\). In the second case, that is if \(I_{\varphi ,\omega }\left( x\chi _{B_2}\right) \ge \frac{\xi }{2}\), proceeding analogously we can prove that \(I_{\varphi ,\omega }\left( \frac{x+y}{2}\right) \le 1-\delta \left( \varphi \circ x,\frac{\xi \cdot \eta _x}{2}\right) \).

Necessity. If \(\int _{0}^{\infty }\omega \left( t\right) dt<\infty \) or \(\varphi \notin \varDelta _{2}({\mathbb {R}})\), then \(\varLambda _{\varphi ,\omega }\) contains an order isometric copy of \(l^{\infty }\) (see [11, Theorem 2.4]). Suppose now that \(\int _{0}^{\infty }\omega \left( t\right) dt=\infty \), \(\varphi \in \varDelta _{2}({\mathbb {R}})\) and there exists \(u_0>0\) such that \(\varphi \left( \frac{1}{2}u_0\right) =\frac{1}{2}\varphi \left( u_0\right) \). Then \(\varphi \left( \frac{1}{2}u\right) =\frac{1}{2}\varphi \left( u\right) \) for any \(u\in \left[ 0, u_0\right) \). Moreover, we can find \(t_0>0\) such that \(\int _{0}^{t_0}\varphi \left( u_0\right) \omega \left( t\right) dt=1\) and \(t_n\) such that \(\int _{0}^{t_n}\varphi \left( u_n\right) \omega \left( t\right) dt=1\) for all \(n\in {\mathbb {N}}\), where \(u_n=\frac{1}{2^n}u_0\). Taking

$$\begin{aligned} x=u_0 \chi _{\left[ 0,t_{0}\right) }\quad \mathrm{and}\quad y_n=u_n \chi _{\left[ t_{0},t _{0}+t_n\right) }, \end{aligned}$$

we get \(I_{\varphi , \omega }\left( x\right) =I_{\varphi , \omega }\left( y_n\right) =1\) for all \(n\in {\mathbb {N}}\). Since

$$\begin{aligned} \int _{0}^{t_0}\varphi \left( u_n\right) \omega \left( t\right) dt=\int _{0}^{t_0} \varphi \left( \frac{u_0}{2^n}\right) \omega \left( t\right) dt=\frac{1}{2^n}\int _{0}^{t_0}\varphi \left( u_0\right) \omega \left( t\right) dt=\frac{1}{2^n}, \end{aligned}$$

we get

$$\begin{aligned} \int _{t_0}^{t_0+t_n}\varphi \left( u_n\right) \omega \left( t\right) dt\ge \int _{t_0}^{t_n}\varphi \left( u_n\right) \omega \left( t\right) dt=1-\frac{1}{2^{n}}. \end{aligned}$$

Therefore

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x\pm y_n}{2}\right)&=\int _{0}^{t_0}\varphi \left( \frac{u_0}{2}\right) \omega \left( t\right) dt+\int _{t_0}^{t_0+t_n}\varphi \left( \frac{u_n}{2}\right) \omega \left( t\right) dt \\&=\frac{1}{2}\int _{0}^{t_0}\varphi \left( u_0\right) \omega \left( t\right) dt+\frac{1}{2}\int _{t_0}^{t_0+t_n}\varphi \left( u_n\right) \omega \left( t\right) dt \\&\quad \ge \frac{1}{2}+\frac{1}{2}\left( 1-\frac{1}{2^n}\right) =1-\frac{1}{2^{n+1}}. \end{aligned}$$

Consequently

$$\begin{aligned} \lim _{n\rightarrow \infty }\min \left( \left\| \frac{x-y_n}{2}\right\| _{\varphi , \omega }, \left\| \frac{x+y_n}{2}\right\| _{\varphi , \omega }\right) =1 , \end{aligned}$$

which means that the space \(\varLambda _{\varphi ,\omega }\) is not locally uniformly non-square.

Theorem 3

Let \(\alpha =\gamma <\infty \) and \(\int _{0}^{\gamma }\varphi (\beta )\omega (t)dt<1\). Then the following conditions are equivalent:

  1. (i)

    \(\varphi \in \varDelta _2(\infty )\),

  2. (ii)

    the Orlicz–Lorentz space \(\varLambda _{\varphi ,\omega }\) is non-square,

  3. (iii)

    the Orlicz–Lorentz space \(\varLambda _{\varphi ,\omega }\) is locally uniformly non-square.

Proof

The implication (iii)\(\Rightarrow \)(ii) is obvious. The implication (ii)\(\Rightarrow \)(i) has been proved in Theorem 2.2 in [3]. We shall show (i)\(\Rightarrow \)(iii). Let us take an arbitrary \(x\in S\left( \varLambda _{\varphi ,\omega }\right) \). By the assumption that \(\int _{0}^{\gamma }\varphi (\beta )\omega (t)dt<1\) and \(\varphi \in \varDelta _2(\infty )\), we get

$$\begin{aligned} m\left( \left\{ t\in \left[ 0, \gamma \right) : \vert x(t)\vert>\beta \right\} \right) =t_0>0. \end{aligned}$$

Hence, there exist \(t_1, t_2\) such that \(0\le t_1 < t_2 \le t_0\), \(\beta<x^{*}(t_2)\le x^{*}(t_1)<\infty \) and

$$\begin{aligned} \int _{t_1}^{t_2}\varphi \left( x^{*}(t)\right) \omega (t)dt>0. \end{aligned}$$

Proceeding analogously as in the proof of sufficiency in Theorem 2, we can find \(\delta >0\) depending only on x such that \(\min \left( \left\| \frac{x-y}{2}\right\| _{\varphi , \omega }, \left\| \frac{x+y}{2}\right\| _{\varphi , \omega }\right) \le 1-\delta \) for every \(y\in B\left( \varLambda _{\varphi , \omega }\right) \).

Theorem 4

Let \(\alpha =\gamma <\infty \) and \(\int _{0}^{\gamma }\varphi (\beta )\omega (t)dt\ge 1\). Then the Orlicz–Lorentz function space \(\varLambda _{\varphi ,\omega }\) is locally uniformly non-square if and only if \(\varphi \in \varDelta _{2}(\infty )\), \(\psi \in \varDelta _{2}(\infty )\), where \(\psi \) denotes the complementary function of \(\varphi \) in the sense of Young (see formula (3)), and \(\int _{0}^{\gamma _{0}/2}\varphi (\beta )\omega (t)dt<1\).

Proof

Sufficiency. Since \(\varphi \in \varDelta _{2}(\infty )\), by Lemma 1, it is sufficient to prove the corresponding inequalities for the modular.

Case 1. Suppose that \(\gamma _{0}>0\). Let us take an arbitrary \(x\in S\left( \varLambda _{\varphi ,\omega }\right) \). If

$$\begin{aligned} m\left( \Big \{ t\in \left[ 0, \gamma \right) : \vert x(t)\vert>\beta \Big \}\right) =t_0>0, \end{aligned}$$
(6)

then we proceed analogously as in the proof of the implication (i)\(\Rightarrow \)(iii) in Theorem 3.

Let us now assume that inequality (6) does not hold or, equivalently, \(x^{*}(0)\le \beta \). Define

$$\begin{aligned} c:=\frac{1-\int _{0}^{\gamma _{0}/2}\varphi (\beta )\omega (t)dt}{8}. \end{aligned}$$

By the assumptions we get \(c\in \left( 0, \frac{1}{8}\right) \). Let \(u_0\) be such that

$$\begin{aligned} \int _{0}^{\gamma _{0}/2}\varphi (u_0)\omega (t)dt=1-4c. \end{aligned}$$
(7)

We have \(u_0>\beta \) and, by the condition \(\psi \in \varDelta _2(\infty )\), there exists \(\eta =\eta (u_0)\in (0, 1)\) such that

$$\begin{aligned} \varphi \left( \frac{u}{2}\right) \le \frac{1-\eta }{2}\varphi (u) \end{aligned}$$
(8)

for \(u\ge u_0\). Moreover, in virtue of \(\varphi \in \varDelta _2(\infty )\), for \(K=\frac{2-\eta }{2(1-\eta )}\) we can find \(\tau \in (0, 1)\) such that

$$\begin{aligned} \varphi ((1+\tau )u)\le K\varphi (u) \end{aligned}$$

for \(u \ge u_0\). Thus, for \(u\ge u_1\), where \(u_1=\max \left( u_0, \frac{\beta }{\tau }\right) \), we get

$$\begin{aligned} \varphi (u+\beta )\le \varphi (u+u_1\tau )\le \varphi (u+u\tau )\le K\varphi (u). \end{aligned}$$
(9)

In virtue of (8) and (9), we obtain

$$\begin{aligned} \varphi \left( \frac{u+\beta }{2}\right) \le \frac{1-\eta }{2} \varphi (u+\beta )\le \frac{1-\eta }{2}K\varphi (u)=\frac{2-\eta }{4}\varphi (u) \end{aligned}$$
(10)

for \(u\ge u_1\). Let us take an arbitrary \(y\in S\left( \varLambda _{\varphi ,\omega }\right) \) and define

$$\begin{aligned} e\left( \frac{u_0+\beta }{2}\right)&=\left\{ t\in [0, \gamma ): \vert y(t)\vert \ge \frac{u_0+\beta }{2}\right\} ,\nonumber \\ e(u_0)&=\Big \{ t\in [0, \gamma ): \vert y(t)\vert \ge u_0\Big \}, \\ e(u_1+2\beta )&=\Big \{ t\in [0, \gamma ): \vert y(t)\vert \ge u_1+2\beta \Big \}.\nonumber \end{aligned}$$
(11)

Case 1.1. Suppose

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{*}(t) \right) \omega (t)dt=\int _{0}^{m(e(u_1+2\beta ))}\varphi \left( y^{*}(t)\right) \omega (t)dt\ge \frac{c}{2}. \end{aligned}$$
(12)

Define

$$\begin{aligned} f(u_1+\beta )=\Big \{ t\in [0, \gamma ): \left| x(t)+y(t)\right| \ge u_1+\beta \Big \}. \end{aligned}$$

We have \(\left| y(t) \right| \ge u_1\) for m-a.e. \(t\in f(u_1+\beta )\) and \(e(u_1+2\beta )\subset f(u_1+\beta )\). Moreover, in virtue of (10), we obtain

$$\begin{aligned} \varphi \left( \frac{x(t)+y(t)}{2}\right) \le \varphi \left( \frac{\vert y(t)\vert +\beta }{2}\right) \le \frac{2-\eta }{4}\varphi (y(t)) \end{aligned}$$

for m-a.e. \(t\in f(u_1+\beta )\), whence

$$\begin{aligned} \varphi \left( \left( \frac{x+y}{2}\chi _{f(u_1+\beta )} \right) ^{*}(t)\right) \le \frac{2-\eta }{4} \varphi \left( \left( y\chi _{f(u_1+\beta )}\right) ^{*}(t)\right) \end{aligned}$$

and in consequence

$$\begin{aligned}&\int _{0}^{m(f(u_1+\beta ))} \varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\quad =\int _{0}^{m(f(u_1+\beta ))} \varphi \left( \left( \frac{x+y}{2}\chi _{f(u_1+\beta )}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\quad \le \frac{2-\eta }{4}\int _{0}^{m(f(u_1+\beta ))} \varphi \left( \left( y\chi _{f(u_1+\beta )}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\quad \le \frac{2-\eta }{4}\int _{0}^{m(e(u_1+2\beta ))} \varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\, \frac{2-\eta }{4}\int _{m(e(u_1+2\beta ))}^{m(f(u_1+\beta ))} \varphi \left( \left( y\chi _{f(u_1+\beta )}\right) ^{*}(t)\right) \omega (t)dt. \end{aligned}$$
(13)

Define

$$\begin{aligned} t(x)&=m\left( \left( \left[ 0, \gamma \right) {\setminus } f\left( u_1+\beta \right) \right) \cap {{\,\mathrm{supp}\,}}x\right) ,\\ t(y)&=m\left( \left( \left[ 0, \gamma \right) {\setminus } f\left( u_1+\beta \right) \right) \cap {{\,\mathrm{supp}\,}}y\right) . \end{aligned}$$

By [3, Remark 1.1], we get

$$\begin{aligned}&\int _{m(f(u_1+\beta ))}^{\gamma } \varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\quad =\int _{m(f(u_1+\beta ))}^{\gamma }\varphi \left( \left( \frac{x+y}{2}\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*} \left( t-m\left( f\left( u_1+\beta \right) \right) \right) \right) \omega (t)dt \nonumber \\&\quad \le \frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(y)}\varphi \left( \left( y\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(x)}\varphi \left( \left( x\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt. \end{aligned}$$
(14)

By (12), (13) and (14) we obtain

$$\begin{aligned}&I_{\varphi , \omega }\left( \frac{x+y}{2}\right) =\int _{0}^{\gamma }\varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt\nonumber \\&\quad \le \frac{2-\eta }{4}\int _{0}^{m(e(u_1+2\beta ))} \varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\frac{2-\eta }{4}\int _{m(e(u_1+2\beta ))}^{(m(f(u_1+\beta ))} \varphi \left( \left( y\chi _{f(u_1+\beta )}\right) ^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(y)}\varphi \left( \left( y\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(x)}\varphi \left( \left( x\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \nonumber \\&\quad \le \frac{2-\eta }{4}\int _{0}^{m(e(u_1+2\beta ))} \varphi \left( y^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(e(u_1+2\beta ))}^{(m(f(u_1+\beta ))}\varphi \left( \left( y\chi _{(f(u_1+\beta ){\setminus } e(u_1+2\beta ))}\right) ^{*}(t-m(e(u_1+2\beta )))\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(y)}\varphi \left( \left( y\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \nonumber \\&\qquad +\,\,\frac{1}{2}\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(x)}\varphi \left( \left( x\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \end{aligned}$$
(15)

Since the function

$$\begin{aligned} {\bar{y}}(t)\mathrel {\mathop :}=\left\{ \begin{array}{l}{\left( y\chi _{(f(u_1+\beta ){\setminus } e(u_1+2\beta ))}\right) ^{*}(t-m(e(u_1+2\beta )))} \\ \qquad \quad \text{ for } t\in [m(e(u_1+2\beta )),m(f(u_1+\beta ))), \\ \\ \left( y\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta ))) \\ \qquad \quad \text{ for } t\in [m(f(u_1+\beta )),m(f(u_1+\beta ))+t(y)), \\ \\ 0\qquad \text{ otherwise, } \\ \end{array} \right. \end{aligned}$$

is equimeasurable with \(y\chi _{([0,\gamma ){\setminus } e(u_1+2\beta )}\), by Hardy-Littlewood inequality, we have

$$\begin{aligned}&\int _{m(e(u_1+2\beta ))}^{\gamma }\varphi \left( {\bar{y}}(t)\right) \omega (t)dt\nonumber \\&\quad =\int _{m(e(u_1+2\beta ))}^{(m(f(u_1+\beta ))}\varphi \left( \left( y\chi _{(f(u_1+\beta ){\setminus } e(u_1+2\beta ))}\right) ^{*}(t-m(e(u_1+2\beta )))\right) \omega (t)dt \nonumber \\&\qquad +\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(y)}\varphi \left( \left( y\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt \nonumber \\&\quad \le \int _{m(e(u_1+2\beta ))}^{(m(f(u_1+\beta ))+t(y)}\varphi \left( \left( y\chi _{[0,\gamma ){\setminus } e(u_1+2\beta ))}\right) ^{*}(t-m(e(u_1+2\beta )))\right) \omega (t)dt \nonumber \\&\quad =\int _{m(e(u_1+2\beta ))}^{\gamma }\varphi \left( y^{*}(t)\right) \omega (t)dt. \end{aligned}$$
(16)

Simultaneously, by

$$\begin{aligned} \varphi \circ \left( x\chi _{([0,\gamma ){\setminus } f(u_1+\beta ))}\right) \le \varphi \circ x, \end{aligned}$$

we get

$$\begin{aligned} \varphi \circ \left( \left( x\chi _{([0,\gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}\right) \le \varphi \circ x^{*}, \end{aligned}$$

whence

$$\begin{aligned}&\int _{m(f(u_1+\beta ))}^{m(f(u_1+\beta ))+t(x)}\varphi \left( \left( x\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t-m(f(u_1+\beta )))\right) \omega (t)dt\nonumber \\&\quad \le \int _{0}^{t(x)}\varphi \left( \left( x\chi _{([0, \gamma ){\setminus } f(u_1+\beta ))}\right) ^{*}(t)\right) \omega (t)dt\le \int _{0}^{\gamma }\varphi \left( x^{*}(t)\right) \omega (t)dt. \end{aligned}$$
(17)

Eventually, by (12), (15), (16) and (17), we have

$$\begin{aligned}&I_{\varphi , \omega }\left( \frac{x+y}{2}\right) =\int _{0}^{\gamma }\varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt\nonumber \\&\quad \le \frac{2-\eta }{4}\int _{0}^{m(e(u_1+2\beta ))} \varphi \left( y^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\frac{1}{2}\int _{m(e(u_1+2\beta ))}^{\gamma }\varphi \left( (y^{*}(t)\right) \omega (t)dt \nonumber \\&\qquad +\,\frac{1}{2}\int _{0}^{\gamma }\varphi \left( x^{*}(t)\right) \omega (t)dt \nonumber \\&\quad = \frac{1}{2}\int _{0}^{\gamma }\varphi \left( y^{*}(t)\right) \omega (t)dt+\frac{1}{2}\int _{0}^{\gamma }\varphi \left( x^{*}(t)\right) \omega (t)dt\nonumber \\&\qquad -\frac{\eta }{4}\int _{0}^{m(e(u_1+2\beta ))} \varphi \left( y^{*}(t)\right) \omega (t)dt \le 1-\frac{\eta c}{8}. \end{aligned}$$
(18)

Case 1.2. Let now

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{*}(t) \right) \omega (t)dt=\int _{0}^{m(e(u_1+2\beta ))}\varphi \left( y^{*}(t)\right) \omega (t)dt<\frac{c}{2} \end{aligned}$$
(19)

and

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_0)}\right) ^{*}(t) \right) \omega (t)dt=\int _{0}^{m(e(u_{0}))}\varphi \left( y^{*}(t)\right) \omega (t)dt\ge c. \end{aligned}$$
(20)

Let \(t_1\) and \(t_2\) be such that the following equalities hold:

$$\begin{aligned} \int _{0}^{t_1}\varphi (u_1+2\beta )\omega (t)dt=\frac{c}{2},\nonumber \\ \int _{0}^{t_2}\varphi \left( \frac{u_0+\beta }{2}\right) \omega (t)dt=1. \end{aligned}$$
(21)

We have \(0<t_1<t_2<\gamma \). Moreover, by (19) and (20), we get

$$\begin{aligned} \int _{m(e(u_{1}+2\beta ))}^{m(e(u_{0}))}\varphi (u_{1}+2\beta ) \omega (t)dt\ge \int _{m(e(u_{1}+2\beta ))}^{m(e(u_{0}))} \varphi (y^{*}(t))\omega (t)dt>\frac{c}{2}, \end{aligned}$$

whence, by the definition of \(t_{1}\), we obtain \(m(e(u_0))\ge t_1\). Define

$$\begin{aligned} A_{y}^{1}=\Big \{ t\in e(u_0): y(t)x(t)\ge 0\Big \},\\ A_{y}^{2}=\Big \{ t\in e(u_0): y(t)x(t)<0\Big \}. \end{aligned}$$

We have \(m\left( A_{y}^{1}\right) \ge \frac{t_1}{2}\) or \(m\left( A_{y}^{2}\right) \ge \frac{t_1}{2}\). Let us assume that the first inequality holds. Then, by inequality (8),

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right) \le \varphi \left( \frac{y(t)}{2}\right) \le \frac{1-\eta }{2}\varphi (y(t))\le \frac{1}{2}\varphi (x(t))+\frac{1}{2}\varphi (y(t))-\frac{\eta }{2}\varphi (y(t)) \end{aligned}$$

for m-a.e. \(t\in A_{y}^{1}\). Moreover,

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right) \le \frac{1}{2} \varphi \left( x(t)\right) +\frac{1}{2}\varphi \left( y(t)\right) \end{aligned}$$

for m-a.e. \(t\in [0, \gamma ){\setminus } A_{y}^{1}\). Hence

$$\begin{aligned} \varphi \circ \left( \frac{x-y}{2}\right) \le \frac{1}{2}\varphi \circ x+\frac{1}{2}\varphi \circ y-\frac{\eta }{2}\varphi \circ y\chi _{A_{y}^{1}} \le \frac{1}{2}\varphi \circ x+\frac{1}{2}\varphi \circ y-\frac{\nu }{2}\varphi \circ y\chi _{A_{y}^{1}}, \end{aligned}$$

where \(\nu =\min \left( \eta , 1-\frac{\varphi \left( \frac{u_0+\beta }{2}\right) }{\varphi (u_0)}\right) \). Since \(y(t)\ge u_0\) for m-a.e. \(t\in A_{y}^{1}\), we obtain

$$\begin{aligned} \varphi (y(t))-\nu \varphi (y(t))&\ge \varphi (u_0)(1-\nu )\ge \varphi (u_0)\left( 1-\left( 1-\frac{ \varphi \left( \frac{u_0+\beta }{2}\right) }{\varphi (u_0)}\right) \right) \nonumber \\&=\varphi \left( \frac{u_0+\beta }{2}\right) \end{aligned}$$
(22)

for the same t. It follows from the inequality \(0\le \varphi \circ y-\nu \varphi \circ y\chi _{A_{y}^{1}}\le \varphi \circ y\) that

$$\begin{aligned} \left( \varphi \circ y - \nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}\le \left( \varphi \circ y\right) ^{*}=\varphi \circ y^{*}. \end{aligned}$$
(23)

Furthermore, it follows from (22) that for any \(t\in [0,\gamma )\) such that \(y^{*}(t)<\frac{u_0+\beta }{2}\) we have equality in (23). Simultaneously

$$\begin{aligned}&\int _{0}^{\gamma }\left( \varphi \circ y - \nu \varphi \circ y\chi _{A_{y}^{1}}\right) (t)dt \le \int _{0}^{\gamma }\left( \varphi \circ y - \nu \varphi (u_0)\chi _{A_{y}^{1}}\right) (t)dt \\ =&\int _{0}^{\gamma }\varphi (y(t))dt-\int _{0}^{\gamma }\nu \varphi (u_0)\chi _{A_{y}^{1}}(t)dt \le \int _{0}^{\gamma }\varphi (y(t))dt-\nu \varphi (u_0)\cdot \frac{t_1}{2}. \end{aligned}$$

Hence, by [14, property \(1^\circ \), p. 63] we obtain

$$\begin{aligned} \int _{0}^{\gamma }\left( \varphi \circ y - \nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}(t)dt \le \int _{0}^{\gamma }\varphi (y^{*}(t))dt-\frac{\nu t_1\varphi (u_0)}{2}. \end{aligned}$$

Since \(I_{\varphi ,\omega }(y)=1\), by the definitions of \(e(\frac{u_{0}+\beta }{2})\) and \(t_2\) (see formulas (11) and (21), respectively), we have \(m(e(\frac{u_{0}+\beta }{2}))\le t_{2}\). Hence, by the remark concerning inequality (23), we obtain

$$\begin{aligned} \int _{t_2}^{\gamma }\left( \varphi \circ y - \nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}(t)dt =\int _{t_2}^{\gamma }\varphi (y^{*}(t))dt \end{aligned}$$

and in consequence

$$\begin{aligned}&\int _{0}^{\gamma }\left( \varphi \left( y^{*}(t)\right) -\left( \varphi \circ y-\nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}(t)\right) \omega (t)dt\\&\quad = \int _{0}^{t_{2}}\left( \varphi \left( y^{*}(t)\right) -\left( \varphi \circ y-\nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}(t)\right) \omega (t)dt\\&\quad \ge \int _{0}^{t_{2}}\left( \varphi \left( y^{*}(t)\right) -\left( \varphi \circ y-\nu \varphi \circ y\chi _{A_{y}^{1}}\right) ^{*}(t)\right) \omega (t_{2})dt\\&\quad \ge \frac{\nu t_1\varphi (u_0)\omega (t_2)}{2}. \end{aligned}$$

Therefore,

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x-y}{2}\right)&=\left\| \varphi \circ \left( \frac{x-y}{2}\right) \right\| _{\omega }\le \left\| \frac{1}{2}\varphi \circ x+\frac{1}{2}\varphi \circ y-\frac{\nu }{2}\varphi \circ y\chi _{A_{y}^{1}}\right\| _{\omega } \nonumber \\&\le \frac{1}{2}\Vert \varphi \circ x\Vert _{\omega }+\frac{1}{2}\Vert \varphi \circ y-\nu \varphi \circ y\chi _{A_{y}^{1}}\Vert _{\omega } \nonumber \\&\le \frac{1}{2}\Vert \varphi \circ x\Vert _{\omega }+\frac{1}{2}\Vert \varphi \circ y\Vert _{\omega }-\frac{\nu t_1\varphi (u_0)\omega (t_2)}{4} \nonumber \\&=1-\frac{\nu t_1\varphi (u_0)\omega (t_2)}{4}. \end{aligned}$$
(24)

If \(m(A_{y}^{1})<\frac{t_1}{2}\), then \(m(A_{y}^{2})\ge \frac{t_1}{2}\), and proceeding analogously we obtain

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \le 1-\frac{\nu t_1 \varphi (u_0)\omega (t_2)}{4}. \end{aligned}$$
(25)

Case 1.3. Suppose that

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_0)}\right) ^{ *}(t)\right) \omega (t)dt=\int _{0}^{m(e(u_{0}))} \varphi \left( y^{*}(t)\right) \omega (t)dt<c. \end{aligned}$$
(26)

Let \(t_3\) and \(u_2\) be such that

$$\begin{aligned} \int _{0}^{t_3}\varphi (u_0)\omega (t)dt=1-2c \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{\gamma }\varphi (u_2)\omega (t)dt=c. \end{aligned}$$

By the definition of \(u_0\) (see (7)) we get \(\frac{1}{2}\gamma _{0}<t_3<\frac{3}{4}\gamma _{0}\). Simultaneously, since \(\int _{0}^{\gamma }\varphi (\beta )\omega (t)dt\ge 1\), we have \(0<u_2<\beta <u_0\). Define

$$\begin{aligned} B_{x}&=\Big \{ t\in [0, \gamma ): \vert x(t) \vert \ge u_2\Big \}, \end{aligned}$$
(27)
$$\begin{aligned} B_{y}&=\Big \{ t\in [0, \gamma ): \vert y(t) \vert \ge u_2\Big \}. \end{aligned}$$
(28)

By the inequalities \(x^{*}(0)\le \beta \) and (26) we obtain \(m(B_x)\ge t_3\) and \(m(B_y)\ge t_3\). Define

$$\begin{aligned} t_4:=\frac{t_3-\frac{\gamma _{0}}{2}}{2}<\frac{1}{8}\gamma _{0} \end{aligned}$$

and

$$\begin{aligned} C_{x,y}^{+}&=\Big \{ t\in [0,\gamma ): \min (\vert x(t) \vert , \vert y(t) \vert )\ge \frac{u_2}{4} \wedge x(t)y(t)>0\Big \},\end{aligned}$$
(29)
$$\begin{aligned} C_{x,y}^{-}&=\Big \{ t\in [0,\gamma ): \min (\vert x(t) \vert , \vert y(t) \vert )\ge \frac{u_2}{4} \wedge x(t)y(t)<0\Big \}. \end{aligned}$$
(30)

Case 1.3.1. Assume that \(m(C_{x,y}^{+})\ge \frac{t_4}{2}\). Then we have

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right) \le \frac{1}{2}\varphi (y(t))+\frac{1}{2}\varphi (x(t))-\frac{1}{2} \cdot \frac{u_2}{4\beta }\varphi (x(t)) \end{aligned}$$

for m-a.e. \(t\in C_{x,y}^{+}\). Indeed, if \(\vert x(t) \vert \ge \vert y(t)\vert \), then

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right)&\le \varphi \left( \frac{x(t)-\frac{u_2}{4}{{\,\mathrm{sgn}\,}}(x(t))}{2}\right) \le \varphi \left( \frac{x(t)-\frac{u_2}{4}\cdot \frac{x(t)}{\beta }}{2}\right) \\&=\varphi \left( \frac{1}{2}\left( 1-\frac{u_2}{4\beta }\right) x(t) \right) \le \frac{1}{2}\left( 1-\frac{u_2}{4\beta }\right) \varphi (x(t))\\&=\frac{1}{2}\varphi (x(t))-\frac{1}{2}\cdot \frac{u_2}{4\beta }\varphi (x(t)). \end{aligned}$$

On the other hand, if \(\vert x(t) \vert <\vert y(t)\vert \), we get

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right) \le \varphi \left( \frac{y(t)}{2}\right) \le \frac{1}{2}\varphi (y(t))+ \frac{1}{2}\varphi (x(t))-\frac{1}{2}\cdot \frac{u_2}{4\beta }\varphi (x(t)). \end{aligned}$$

It is obvious that for \(t\in [0,\gamma ){\setminus } C_{x,y}^{+}\) we have

$$\begin{aligned} \varphi \left( \frac{x(t)-y(t)}{2}\right) \le \frac{1}{2}\varphi (x(t))+\frac{1}{2}\varphi (y(t)). \end{aligned}$$

Thus,

$$\begin{aligned} \varphi \circ \left( \frac{x(t)-y(t)}{2}\right) \le \frac{1}{2}\varphi \circ y+\frac{1}{2}\varphi \circ x -\frac{1}{2}\cdot \frac{u_2}{4\beta }\varphi \circ x\chi _{C_{x,y}^{+}}. \end{aligned}$$

Since

$$\begin{aligned} I_{\varphi , \omega }\left( x\chi _{C_{x,y}^{+}}\right) =\left\| \varphi \circ x\chi _{C_{x,y}^{+}}\right\| _{\omega } \ge \int _{0}^{t_4/2}\varphi \left( \frac{u_2}{4}\right) \omega (t)dt=:\zeta , \end{aligned}$$

by the local uniform monotonicity of the Lorentz space \(\varLambda _\omega \), we get

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x-y}{2}\right)&=\left\| \varphi \circ \left( \frac{x(t)-y(t)}{2}\right) \right\| _{\omega }\le \frac{1}{2}\left\| \varphi \circ y \right\| _{\omega }+\frac{1}{2} \left\| \varphi \circ x -\frac{u_2}{4\beta }\varphi \circ x\chi _{C_{x,y}^{+}}\right\| _{\omega }\nonumber \\&\le 1-\frac{1}{2}\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) , \end{aligned}$$
(31)

where \(\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) \) is a constant from the definition of the local uniform monotonicity of the Lorentz space \(\varLambda _\omega \) corresponding to \(\varphi \circ x\) and \(\varepsilon =\frac{u_2 \zeta }{4\beta }\).

Analogously, if \(m(C_{x,y}^{-})>\frac{t_4}{2}\), we have

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \le 1-\frac{1}{2}\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) . \end{aligned}$$
(32)

Case 1.3.2. Finally assume that \(m(C_{x,y}^{+})<\frac{t_4}{2}\) and \(m(C_{x,y}^{-})<\frac{t_4}{2}\). The proof of this case is analogous to the proof of Case 2.2.2 in Theorem 2.4 in [3]. We shall present it for completeness’ sake. Let us define

$$\begin{aligned} C_x&=B_x{\setminus }\left( C_{x,y}^{+}\cup C_{x,y}^{-}\right) , \end{aligned}$$
(33)
$$\begin{aligned} C_y&=B_y{\setminus }\left( C_{x,y}^{+}\cup C_{x,y}^{-}\right) , \end{aligned}$$
(34)

where \(B_{x}\) and \(B_{y}\) are defined by formulas (27) and (28). We have \(C_x\cap C_y=\emptyset \) and

$$\begin{aligned} \min (m(C_x),m(C_y))\ge t_3-t_4=\frac{1}{2}t_3+\frac{1}{4}\gamma _{0}>\frac{1}{2}\gamma _{0}, \end{aligned}$$
(35)

whence

$$\begin{aligned} m(C_x \cup C_y)\ge t_3+\frac{1}{2}\gamma _{0}>\gamma _{0}. \end{aligned}$$
(36)

Define

$$\begin{aligned} a:=\frac{t_3-\frac{\gamma _{0}}{2}}{8}<\frac{1}{32}\gamma _{0}\quad \mathrm{and}\quad t_5:=\gamma _{0}+a. \end{aligned}$$

By [14, property \(7^{\circ }\), p. 64] there exist sets \(e_{\gamma _{0}}=e_{\gamma _{0}}\left( \frac{x+y}{2}\right) \) and \(e_{t_{5}}=e_{t_{5}}\left( \frac{x+y}{2}\right) \) such that \(m\left( e_{\gamma _{0}}\right) =\gamma _{0}\), \(m\left( e_{t_{5}}\right) =t_{5}\),

$$\begin{aligned} \int _{0}^{\gamma _{0}}\left( \frac{x+y}{2}\right) ^{*}(t)dt=\int _{e_{\gamma _{0}}} \left| \frac{x+y}{2}\right| (t)dt \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{t_{5}}\left( \frac{x+y}{2}\right) ^{*}(t)dt=\int _{e_{t_{5}}}\left| \frac{x+y}{2}\right| (t)dt. \end{aligned}$$

Without loss of generality we may assume that \(e_{\gamma _{0}}\subset e_{t_{5}}\). Denoting \(D_{\gamma _{0}}=e_{t_{5}}{\setminus } e_{\gamma _{0}}\) and \(D_{t_{5}}=\left[ 0, \gamma \right) {\setminus } e_{t_{5}}\), by [3, Remark 1.1], we obtain

$$\begin{aligned} I_{\varphi ,\omega }\left( \frac{x+y}{2}\right)&=\int _{0}^{\gamma _{0}}\varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt +\int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt \\&\quad +\,\int _{t_{5}}^{\gamma }\varphi \left( \left( \frac{x+y}{2}\right) ^{*}(t)\right) \omega (t)dt \\&=\int _{0}^{\gamma _{0}}\varphi \left( \left( \frac{x+y}{2}\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \omega (t)dt\\&\quad +\int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( \frac{x+y}{2}\chi _{D_{\gamma _{0}}}\right) ^{*}(t-\gamma _{0})\right) \omega (t)dt \\&\quad +\,\int _{t_{5}}^{\gamma }\varphi \left( \left( \frac{x+y}{2}\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) \omega (t)dt \\&\le \frac{1}{2}\int _{0}^{\gamma _{0}}\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \omega (t)dt +\frac{1}{2}\int _{0}^{\gamma _{0}}\varphi \left( \left( y\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \omega (t)dt \\&\quad +\,\frac{1}{2}\int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( x\chi _{D_{\gamma _{0}}}\right) ^{*}(t-\gamma _{0})\right) \omega (t)dt\\&\quad +\frac{1}{2}\int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( y\chi _{D_{\gamma _{0}}}\right) ^{*}(t-\gamma _{0})\right) \omega (t)dt\\&\quad +\,\frac{1}{2}\int _{t_{5}}^{\gamma }\varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) \omega (t)dt\\&\quad +\frac{1}{2}\int _{t_{5}}^{\gamma }\varphi \left( \left( y\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) \omega (t)dt. \end{aligned}$$

By inequality (36) we have

$$\begin{aligned} m((C_x \cup C_y)\cap D_{t_{5}})&=m((C_x \cup C_y){\setminus } e_{t_{5}})\ge \left( t_3+\frac{\gamma _{0}}{2}\right) -\left( \gamma _{0}+a\right) \\&=t_3-\frac{\gamma _{0}}{2}-a=7a. \end{aligned}$$

Hence, without loss of generality, it may be assumed that \(m(C_{x}\cap D_{t_{5}})>a\). Then, since \(C_{x}\subset B_{x}\) we have \(m(\{t:|x|\chi _{D_{t_{5}}}(t)\ge u_{2}\})>a\) and thus \(\left( x\chi _{D_{t_5}}\right) ^{*}(a)\ge u_2\). If \(\left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(\gamma _{0}-a)\le \frac{u_2}{4}\), then

$$\begin{aligned}&\int _{\gamma _{0}-a}^{\gamma _{0}}\left[ \varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-\gamma _{0}+a)\right) -\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \right] \omega (t)dt\nonumber \\&\qquad -\int _{t_{5}}^{t_{5}+a}\left[ \varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) -\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t-(t_{5}-\gamma _{0}+a))\right) \right] \omega (t)dt\nonumber \\&\quad =\int _{\gamma _{0}-a}^{\gamma _{0}}\left[ \varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-\gamma _{0}+a)\right) -\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \right] (\omega (t)-\omega (t+t_{5}-\gamma _{0}+a))dt\nonumber \\&\quad \ge (\omega _{0}-\omega (t_{5}))\int _{\gamma _{0}-a}^{\gamma _{0}}\left( \varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-\gamma _{0}+a)\right) -\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \right) dt\nonumber \\&\quad \ge a\left( \varphi (u_{2})-\varphi \left( \frac{u_{2}}{4}\right) \right) (\omega _{0}-\omega (t_{5})) \ge \frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{4}, \end{aligned}$$
(37)

where p is in fact the constant value of the derivative of \(\varphi \) on the interval \((0,\beta )\) (the interval of linearity of \(\varphi \)) and \(\omega _0=\omega (t)\) for any \(t\in (0, \gamma _{0})\). By the definition of \(\gamma _{0}\) we get \(\omega _0-\omega (t_5)>0\). Hence and by Hardy-Littlewood inequality (proceeding analogously as in formula (16)), we obtain

$$\begin{aligned}&\int _{0}^{\gamma _{0}}\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \omega (t)dt+ \int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( x\chi _{D_{\gamma _{0}}}\right) ^{*}(t-\gamma _{0})\right) \omega (t)dt\nonumber \\&\qquad +\,\int _{t_{5}}^{\gamma }\varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) \omega (t)dt \nonumber \\&\quad \le \int _{0}^{\gamma _{0}-a}\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(t)\right) \omega (t)dt+ \int _{\gamma _{0}-a}^{\gamma _{0}}\varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-(\gamma _{0}-a))\right) \omega (t)dt\nonumber \\&\qquad +\,\int _{\gamma _{0}}^{t_{5}}\varphi \left( \left( x\chi _{D_{\gamma _{0}}}\right) ^{*}(t-\gamma _{0})\right) \omega (t)dt\nonumber \\&\qquad +\,\int _{t_{5}}^{t_{5}+a}\varphi \left( \left( x\chi _{e_{\gamma _{0}}}\right) ^{*} (t-(t_{5}-\gamma _{0}+a))\right) \omega (t)dt \nonumber \\&\qquad +\,\int _{t_{5}+a}^{\gamma }\varphi \left( \left( x\chi _{D_{t_{5}}}\right) ^{*}(t-t_{5})\right) \omega (t)dt -\frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{4}\nonumber \\&\quad \le \int _{0}^{\gamma }\varphi (x^{*}(t))\omega (t)dt-\frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{4}=1-\frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{4}. \end{aligned}$$
(38)

Suppose now that \(\left( x\chi _{e_{\gamma _{0}}}\right) ^{*}(\gamma _{0}-a)>\frac{u_2}{4}\). Since \(m(C_{x,y}^{+}\cup C_{x,y}^{-})<t_4<\frac{1}{8}\gamma _{0}\), we have \(m \left( \Big \{ t\in e_{\gamma _{0}}: \vert y(t) \vert >\frac{u_2}{4}\Big \}\right) \le t_4+a\le \frac{5}{32}\gamma _{0}\). Thus \(\left( y\chi _{e_{\gamma _{0}}}\right) ^{*}(\gamma _{0}-a)\le \frac{u_2}{4}\). Simultaneously,

$$\begin{aligned} m(C_y\cap e_{\gamma _{0}})\le m(B_y\cap e_{\gamma _{0}})\le t_4+a \le \frac{5}{32}\gamma _{0}. \end{aligned}$$

Hence, by (35) we get

$$\begin{aligned} m(C_y\cap D_{t_{5}})\ge \frac{1}{2}t_3+\frac{1}{4}\gamma _{0}-(t_4+a)-a=\frac{\gamma _{0}}{2}-2a \end{aligned}$$

and we conclude that \((y\chi _{D_{t_{5}}})^{*}(a)\ge u_{2}\). Repeating the procedure from (37) and (38) for y we obtain

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \le 1-\frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{8}. \end{aligned}$$
(39)

Summarizing Case 1, for any \(x\in S(\varLambda _{\varphi , \omega })\) such that \(x^{*}(0)\le \beta \), by (18), (24), (25), (31), (32) and (39) we have

$$\begin{aligned}&\min \left( I_{\varphi , \omega }\left( \frac{x+y}{2}\right) , I_{\varphi , \omega }\left( \frac{x-y}{2}\right) \right) \\&\quad \le 1-\min \left( \frac{\eta c}{8}, \frac{\nu t_1 \varphi (u_0)\omega (t_2)}{4}, \frac{1}{2}\delta \left( \varphi \circ x,\frac{u_2 \zeta }{4\beta }\right) , \frac{3\,a\,p\,u_{2}(\omega _{0}-\omega (t_{5}))}{8}\right) . \end{aligned}$$

Case 2. Let \(\gamma _{0}=0\). If \(x^{*}(0)>\beta \), we can proceed analogously as in the proof of Case 1. Assume now that \(x^{*}(0)\le \beta \). Let \(c=\frac{1}{8}\) and \(u_0>\beta \). Since \(\psi \in \varDelta _2(\infty )\), there exists \(\eta \in (0,1)\) such that inequality (8) holds for \(u\ge u_0\). We define \(u_1\), \(e(u_0)\) and \(e(u_1+2\beta )\) as in Case 1. If

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{*}(t)\right) \omega (t)dt\ge \frac{1}{16}, \end{aligned}$$

then proceeding analogously as in Case 1.1 we obtain

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \le 1-\frac{\eta }{64}. \end{aligned}$$
(40)

Suppose now that

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_1+2\beta )}\right) ^{ *}(t)\right) \omega (t)dt<\frac{1}{16} \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_0)}\right) ^{*}(t)\right) \omega (t)dt\ge \frac{1}{8}. \end{aligned}$$

We define \(t_1\) and \(t_2\) by the equalities

$$\begin{aligned} \int _{0}^{t_1}\varphi \left( u_1+2\beta \right) \omega (t)dt=\frac{1}{16} \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{t_2}\varphi \left( \frac{u_0+\beta }{2}\right) \omega (t)dt=1. \end{aligned}$$

We have \(0<t_1<t_2<\gamma \). Proceeding analogously as in Case 1.2, we get

$$\begin{aligned} \min \left( I_{\varphi , \omega }\left( \frac{x-y}{2}\right) , I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \right) =1-\frac{\nu t_1\varphi (u_0)\omega (t_2)}{4}, \end{aligned}$$
(41)

where \(\nu =\min \left( \eta , 1-\frac{\varphi \left( \frac{u_0+\beta }{2}\right) }{\varphi (u_0)}\right) \).

Finally let us assume that

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( \left( y\chi _{e(u_0)}\right) ^{*}(t) \right) \omega (t)dt<\frac{1}{8} \end{aligned}$$

and define \(t_3\) and \(u_2\) by the equalities

$$\begin{aligned} \int _{0}^{t_3}\varphi \left( u_0\right) \omega (t)dt=\frac{3}{4} \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{\gamma }\varphi \left( u_2\right) \omega (t)dt=\frac{1}{8}. \end{aligned}$$

It is obvious that \(0<u_2<\beta <u_0\). Defining the sets \(B_x\) and \(B_y\) as in Case 1.3 (see (27) and (28)), we obtain \(m(B_x)\ge t_3\) and \(m(B_y)\ge t_3\). By the assumption that \(\gamma _{0}=0\), we can find \(t_{\gamma }\) such that \(0<t_{\gamma }<t_3\) and \(\omega (t_{\gamma })>\omega (t_{3})\). Let now \(t_4:=\frac{t_{\gamma }}{4}<\frac{t_3}{4}\) and let \(C_{x,y}^{+}\) and \(C_{x,y}^{-}\) be defined by formulas (29) and (30). If \(m(C_{x,y}^{+})\ge \frac{t_4}{2}\) or \(m(C_{x,y}^{-})\ge \frac{t_4}{2}\), then, analogously as in Case 1.3.1, we obtain

$$\begin{aligned} \min \left( I_{\varphi , \omega }\left( \frac{x-y}{2}\right) , I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \right) \le 1-\frac{1}{2}\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) , \end{aligned}$$
(42)

where \(\zeta =\int _{0}^{t_4/2}\varphi \left( \frac{u_2}{4}\right) \omega (t)dt\) and \(\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) \) is the constant from the definition of local uniform monotonicity of the Lorentz space \(\varLambda _{\omega }\) corresponding to \(\varphi \circ x\) and \(\varepsilon =\frac{u_2\zeta }{4\beta }\).

In the case when \(\max \left( m(C_{x,y}^{+}), m(C_{x,y}^{-})\right) <\frac{t_4}{2}\), we define the sets \(C_x\) and \(C_y\) as in Case 1.3.2 (see (33) and (34)). We have \(C_x\cap C_y=\emptyset \) and, moreover,

$$\begin{aligned} \min \left( m(C_x),m(C_y)\right) \ge t_3-t_4\ge t_3-\frac{t_3}{4}=\frac{3}{4}t_3, \end{aligned}$$

whence

$$\begin{aligned} m(C_x\cup C_y)\ge \frac{3}{2}t_3. \end{aligned}$$

Defining \(a=\frac{1}{32}t_{\gamma }<\frac{1}{32}t_3\) and putting \(t_{\gamma }\) in place of \(\gamma _{0}\) and \(t_3\) in place of \(t_5\), we can repeat the procedure from Case 1.3.2. We get

$$\begin{aligned} I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \le 1-\frac{3apu_2\left( \omega (t_{\gamma })-\omega (t_3)\right) }{8}, \end{aligned}$$
(43)

where p is the derivative of \(\varphi \) on the interval \((0,\beta )\).

Recapitulating Case 2, for any x such that \(x^{*}(0)\le \beta \), by (40), (41), (42) and (43) we get

$$\begin{aligned}&\min \left( I_{\varphi , \omega }\left( \frac{x-y}{2}\right) , I_{\varphi , \omega }\left( \frac{x+y}{2}\right) \right) \\&\quad \le 1-\min \left( \frac{\eta }{64}, \frac{\nu t_1\varphi (u_0)\omega (t_2)}{4}, \frac{1}{2}\delta \left( \varphi \circ x,\frac{u_2\zeta }{4\beta }\right) , \frac{3apu_2\left( \omega (t_{\gamma })-\omega (t_3)\right) }{8}\right) . \end{aligned}$$

Necessity. The necessity of conditions \(\varphi \in \varDelta _{2}(\infty )\) and \(\int _{0}^{\gamma _{0}/2}\varphi (\beta )\omega (t)dt<1\) has been shown in Theorem 2.2 of [3]. Suppose that \(\psi \notin \varDelta _{2}(\infty )\). Then there exists a sequence \((u_n)_{n=1}^{\infty }\) such that \(u_n \rightarrow \infty \) as \(n\rightarrow \infty \) and

$$\begin{aligned} \varphi \left( \frac{u_n}{2}\right) >\frac{1-\frac{1}{n}}{2}\varphi \left( u_n\right) \end{aligned}$$

for any \(n\in {\mathbb {N}}\). We can assume that \(u_1>2\beta \).

There exist \(t_0>0\) such that \(\int _{0}^{t_0}\varphi (\beta )\omega (t)dt=1\) and \(t_n>0\) such that \(\int _{0}^{t_n}\varphi (u_n)\omega (t)dt=1\) for all \(n\in {\mathbb {N}}\). Then we obtain \(t_n<t_0\) for all \(n\in {\mathbb {N}}\) and \(t_n\rightarrow 0\) as \(n\rightarrow \infty \). Define

$$\begin{aligned} x&=\beta \chi _{[0,t_0)} \\ y_n&=u_n\chi _{[0,t_n)}, \quad \text {for any } n\in {\mathbb {N}}. \end{aligned}$$

For any \(n\in {\mathbb {N}}\) consider a straight line passing through the points \(\left( \frac{1}{2}u_n, \frac{n-1}{2n}\varphi (u_n)\right) \) and \(\left( u_n, \varphi (u_n)\right) \), given by the equation

$$\begin{aligned} y(t)=\frac{n+1}{n}\frac{\varphi (u_n)}{u_n}t-\frac{1}{n}\varphi (u_n) \quad \text {for } t\in {\mathbb {R}}. \end{aligned}$$

It is easy to observe that for any \(u\in (0, u_n)\) the graph of the function \(\varphi \) lies above the graph of this line. Hence, we obtain

$$\begin{aligned} \varphi \left( \frac{u_n-\beta }{2}\right)&\ge \frac{n+1}{n}\frac{\varphi (u_n)}{u_n}\left( \frac{u_n-\beta }{2}\right) -\frac{1}{n}\varphi (u_n)\\&=\frac{n-1}{2n}\varphi (u_n)-\frac{n+1}{2n}\varphi (u_n)\frac{\beta }{u_n} \end{aligned}$$

and

$$\begin{aligned}&\lim _{n\rightarrow \infty } I_{\varphi , \omega }\left( \frac{y_n-x}{2}\right) =\lim _{n\rightarrow \infty }\left( \int _{0}^{t_n}\varphi \left( \frac{u_n-\beta }{2}\right) \omega (t)dt +\int _{t_n}^{t_0}\varphi \left( \frac{\beta }{2}\right) \omega (t)dt\right) \\&\quad \ge \lim _{n\rightarrow \infty }\left( \frac{n-1}{2n}\int _{0}^{t_n}\varphi \left( u_n\right) \omega (t)dt -\frac{n+1}{2n}\frac{\beta }{u_n}\int _{0}^{t_n}\varphi \left( u_n\right) \omega (t)dt +\frac{1}{2}\int _{t_n}^{t_0}\varphi \left( \beta \right) \omega (t)dt\right) \\&\quad =\frac{1}{2}+\frac{1}{2}=1. \end{aligned}$$

In consequence,

$$\begin{aligned} \lim _{n\rightarrow \infty }\min \left( \left\| \frac{x-y_n}{2}\right\| _{\varphi , \omega }, \left\| \frac{x+y_n}{2}\right\| _{\varphi , \omega }\right) =1. \end{aligned}$$

3 Applications to Orlicz function spaces

Note that in the case when \(\omega (t)=1\) for any \(t\in (0,\gamma )\) the corresponding Orlicz–Lorentz function spaces become the well-known Orlicz function spaces \(L^{\varphi }=L^{\varphi }([0,\gamma ))\). On the basis of the results presented in [3] and the foregoing part of the present paper we can easily deduce criteria for non-squareness properties of Orlicz function spaces \(L^{\varphi }\).

In the case when \(\gamma =\infty \), by Theorem 2.1 from [3] and Theorem 2, we get the following

Corollary 1

([7], Theorem 2) Let \(\gamma =\infty \). Then the following conditions are equivalent:

  1. 1.

    \(\varphi \in \varDelta _2({\mathbb {R}})\) and \(\varphi (\frac{u}{2})<\frac{1}{2}\varphi (u)\) for any \(u>0\),

  2. 2.

    the Orlicz space \(L^{\varphi }\) is non-square,

  3. 3.

    the Orlicz space \(L^{\varphi }\) is locally uniformly non-square.

In turn, by Theorem 2.3 from [3], we have

Corollary 2

([6], Theorem 1.2.(i)) Let \(\gamma =\infty \). Then the Orlicz space \(L^{\varphi }\) is uniformly non-square if and only if \(\varphi \in \varDelta _2({\mathbb {R}})\) and \(\psi \in \varDelta _2({\mathbb {R}})\), where \(\psi \) denotes the complementary function of \(\varphi \) in the sense of Young (see formula (3)).

Let now \(\gamma <\infty \) and let \(\beta \) be defined by formula (1) (in the paper [3] the same constant was denoted by \(\delta \)). Then by Theorems 2.2 and 2.4 from [3] and Theorems 3 and 4 , we obtain

Corollary 3

Let \(\gamma <\infty \). Then the following assertions are true:

  1. 1.

    ([7], Theorem 3) The Orlicz space \(L^{\varphi }\) is non-square if and only if \(\varphi \in \varDelta _2(\infty )\) and \(\varphi (\beta )\cdot \gamma <2\).

  2. 2.

    The Orlicz space \(L^{\varphi }\) is locally uniformly non-square if and only if \(\varphi \in \varDelta _2(\infty )\) and \((\varphi (\beta )\cdot \gamma <1\) or \(\varphi (\beta )\cdot \gamma \in [1,2)\) and \(\psi \in \varDelta _2(\infty ))\).

  3. 3.

    [6], Theorem 1.2.(ii)) The Orlicz space \(L^{\varphi }\) is uniformly non-square if and only if \(\varphi \in \varDelta _2(\infty )\), \(\psi \in \varDelta _2(\infty )\) and \(\varphi (\beta )\cdot \gamma <2\).

Therefore, if \(\varphi (\beta )\cdot \gamma <1\), then the Orlicz space \(L^{\varphi }\) is locally uniformly non-square if and only if it is non-square, while if \(\varphi (\beta )\cdot \gamma \in [1,2)\), then the Orlicz space \(L^{\varphi }\) is locally uniformly non-square if and only if it is uniformly non-square.