Skip to main content
Log in

Effect of Co2+ Doping on Electrochemical Properties of Nickel Metal Tungstate (NiWO4) Positive Material

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO4 amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO4 and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g−1 at 1 A g−1, and at a current density of 10 A g−1, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g−1 at 0.5 A g−1, and a high energy density of 47 Wh kg−1 at a power density of 527 W kg−1. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO4 and CNWO-10 samples are 9.01 × 10–8 S m−1 and 8.93 × 10–6 S m−1, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7

Similar content being viewed by others

References

  1. Malik, P., Awasthi, M., Sinha, S.: Biomass-based gaseous fuel for hybrid renewable energy systems: an overview and future research opportunities. Int. J. Energy Res. 45, 3464–3494 (2020). https://doi.org/10.1002/er.6061

    Article  Google Scholar 

  2. Vandana, M., Bijapur, K., Soman, G., et al.: Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications. Crit. Rev. Solid State Mater. Sci. (2024). https://doi.org/10.1080/10408436.2023.2202225

    Article  Google Scholar 

  3. Pathak, M., Bhatt, D., Bhatt, R.C., Bohra, B.S.: High energy density supercapacitors: an overview of efficient electrode materials, electrolytes, design, and fabrication. Chem. Record 24(1), e202300236 (2024). https://doi.org/10.1002/tcr.202300236

    Article  CAS  Google Scholar 

  4. Li, X., Haijun, Wu., Guan, C., Elshahawy, A.M., Dong, Y.: (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors. Nano Micro Small 15, 1803895 (2019). https://doi.org/10.1002/smll.201803895

    Article  CAS  Google Scholar 

  5. Xu, H., Zhu, Y., Zhang, M., Li, Q., Zuo, S., Chen, Y.: Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor. Ionics 26, 5199–5210 (2020). https://doi.org/10.1007/s11581-020-03672-9

    Article  CAS  Google Scholar 

  6. Li, P., Shang, T., Dong, X., Li, H., Tao, Y., Yang, Q.-H.: A review of compact carbon design for supercapacitors with high volumetric performance. Nano Micro Small 17, 2007548 (2021). https://doi.org/10.1002/smll.202007548

    Article  CAS  Google Scholar 

  7. Zhang, H., Bai, R.J., Lu, C., Li, J., Xu, Y.G., Kong, L.B., Liu, M.C.: RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage. Ionics 24, 363–372 (2018). https://doi.org/10.1007/s11581-018-2791-0

    Article  CAS  Google Scholar 

  8. Ruiz-Montoya, J.G., Quispe-Garrido, L.V., Calderón Gómez, J.C., et al.: Recent progress in and prospects for supercapacitor materials based on metal oxide or hydroxide/biomass-derived carbon composites. Sustain. Energy Fuels 5, 5332–5365 (2021). https://doi.org/10.1039/D1SE01170G

    Article  CAS  Google Scholar 

  9. Jha, S., Mehta, S., Chen, Y., Renner, P., Sankar, S.S.: NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J. Mater. Chem. C 8, 3418–3430 (2020). https://doi.org/10.1039/C9TC05811G

    Article  CAS  Google Scholar 

  10. Wang, X., Fang, Y., Shi, Bo., Huang, F., Rong, F., Que, R.: Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for highperformance supercapacitors. Chem. Eng. J. 344, 311–319 (2018). https://doi.org/10.1016/j.cej.2018.03.061

    Article  CAS  Google Scholar 

  11. Xie, L., Liu, Y., Bai, H., Li, C., Mao, B., Sun, L., Shi, W.: Core-shell structured ZnCo2O4@ ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 531, 64–73 (2018). https://doi.org/10.1016/j.jcis.2018.07.049

    Article  CAS  PubMed  Google Scholar 

  12. Raj, B.G.S., Acharya, J., Seo, M.K., et al.: One-pot sonochemical synthesis of hierarchical MnWO4 microflowers as effective electrodes in neutral electrolyte for high performance asymmetric supercapacitors. Int. J. Hydrog. Energy 44, 10838–10851 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.035

    Article  CAS  Google Scholar 

  13. Gong, C., Bai, Y.J., Feng, J., Tang, R., Qi, Y.X., Lun, N., Fan, R.H.: Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Appl. Mater. Interfaces 5, 4209–4215 (2013). https://doi.org/10.1021/am400392t

    Article  CAS  PubMed  Google Scholar 

  14. Guo, X., Li, M., Liu, Y., et al.: Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 563, 405–413 (2019). https://doi.org/10.1016/j.jcis.2019.12.076

    Article  CAS  PubMed  Google Scholar 

  15. Miao, W., Han, Q., Zhang, H., Chen, K., Zhang, L., Li, Y., Han, S.: Uniform phosphorus doped CoWO4@ NiWO4 nanocomposites for asymmetric supercapacitors. J. Alloys Compd. 877, 160301 (2021). https://doi.org/10.1016/j.jallcom.2021.160301

    Article  CAS  Google Scholar 

  16. Ghosal, P., Deepa, M., Naskar, I., et al.: Long-lasting panchromatic electrochromic device and energy-dense supercapacitor based on Zn-doped NiO microstars and a redox-active gel. ACS Appl. Energy Mater. 6, 2385–2400 (2023). https://doi.org/10.1021/acsaem.2c03694

    Article  CAS  Google Scholar 

  17. Jeyakanthan, M., Subramanian, U., Tangsali, R.B., Ramesh, A.: AC conductivity, electrochemical and magnetic studies of CoWO4/PbWO4 nanocomposites. Phys. B: Condensed Matter. 586, 412151 (2020). https://doi.org/10.1016/j.physb.2020.412151

    Article  CAS  Google Scholar 

  18. Ikram, M., Javed, Y., Shad, N.A.S.: Facile hydrothermal synthesis of nickel tungstate (NiWO4) nanostructures with pronounced supercapacitor and electrochemical sensing activities. J. Alloys Compd. 878, 160314 (2021). https://doi.org/10.1016/j.jallcom.2021.160314

    Article  CAS  Google Scholar 

  19. Huang, Y., Gao, Y., Liu, C., Cao, Z., Wang, Y., Li, Z., Yan, Y., Zhang, M., Cao, G.: Amorphous NiWO4 nanospheres with high-conductivity and-capacitive performance for supercapacitors. J. Phys. Chem. C 123, 30067–30076 (2019). https://doi.org/10.1021/acs.jpcc.9b08448

    Article  CAS  Google Scholar 

  20. Min, Y., Cui, Z., Qihui, W., Jiafeng, Y., Ling, Y., Ou, W.: Improvement of specific capacitance and rate performance of NiWO4 synthesized through modified chemical precipitation. J. Mater. Sci. Mater. Electron. 32, 12232–12240 (2021). https://doi.org/10.1007/s10854-021-05852-3

    Article  CAS  Google Scholar 

  21. Qin, W., Zhou, N.F., Wu, C., Xie, M.M., Sun, H.C., Guo, Y., Pan, L.K.: Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors. ACS Omega 5, 3801–3808 (2020). https://doi.org/10.1021/acsomega.9b04063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdah, M.A.A.M., Azman, N.H.N., Kulandaivalu, S., Sulaiman, Y.: Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199 (2019). https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  23. DhilipKumar, R., Andou, Y., Karuppuchamy, S.: Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications. J. Alloys Compd. 654, 349–356 (2016). https://doi.org/10.1016/j.jallcom.2016.03.074

    Article  CAS  Google Scholar 

  24. Saha, S., Samanta, P., Murmu, N.C., Kuila, T.: A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018). https://doi.org/10.1016/j.est.2018.03.006

    Article  Google Scholar 

  25. Yue, H., Wang, G., Jin, R., Wang, Q., Cui, Y., Gao, S.: Sulfur-doped amorphous NiMoO4 on crystalline Fe2O3 nanorods for enhanced lithium storage performance. J. Mater. Chem. A 6, 23819–23827 (2018). https://doi.org/10.1039/c8ta08938h

    Article  CAS  Google Scholar 

  26. Gong, Q., Li, Y., Huang, H., Zhang, J., Gao, T., Zhou, G.: Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors. Chem. Eng. J. 344, 290–298 (2018). https://doi.org/10.1016/j.cej.2018.03.079

    Article  CAS  Google Scholar 

  27. Torkian, S., Ghasemi, A., Razavi, R.S.: Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1-xFe2O4 ferrites. Ceram. Int. 43, 6987–6995 (2017). https://doi.org/10.1016/j.ceramint.2017.02.124

    Article  CAS  Google Scholar 

  28. He, Q.F., Ye, Y.F., Yang, Y.: Formation of random solid solution in multicomponentalloys: from Hume-Rothery rules to entropic stabilization. Phase Equilib. Diffus. 38, 416–425 (2017). https://doi.org/10.1007/s11669-017-0560-9

    Article  CAS  Google Scholar 

  29. Nguyen, T.V., Son, L.T., Thuy, V.V., Thao, V.D., Hatsukano, M., Higashimine, K., Maenosono, S., Thu, T.V., Chun, S.-E.: Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for battery-type supercapacitor electrode. Dalton Trans. 49, 6718–6729 (2020). https://doi.org/10.1039/d0dt01177k

    Article  CAS  PubMed  Google Scholar 

  30. Hoang, K., Oh, M., Choi, Y.: Electronic structure, polaron formation, and functional properties in transition-metal tungstates. RSC Adv. 8, 4191–4196 (2018). https://doi.org/10.1039/C7RA13436C

    Article  CAS  PubMed  Google Scholar 

  31. Huanga, Y., Yana, C., Shia, X., Zhia, W., Li, Z.: Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 48, 430–440 (2018). https://doi.org/10.1016/j.nanoen.2018.03.082

    Article  CAS  Google Scholar 

  32. Nagavenkatesh, K.R., Murugesan, M., Sambathkumar, C., Nallamuthu, N., Devendran, P., Krishna kumar, M.: Comparative electrochemical investigation for scheelite structured metals tungstate (MWO4 (M = Ni, Cu and Co)) nanocubes for high dense supercapacitors application. J. Energy Storage 79, 110153 (2024). https://doi.org/10.1016/j.est.2023.110153

    Article  Google Scholar 

  33. Alem, A.F., Worku, A.K., Ayele, D.W., Habtu, N.G., Ambaw, M.D., Yemata, T.A.: Enhancing pseudocapacitive properties of cobalt oxide hierarchical nanostructures via iron doping. Heliyon 9, e13817 (2023). https://doi.org/10.1016/j.heliyon.2023.e13817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahajan, H., Godara, S.K., Srivastava, A.K.: Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. J. Alloys Compd. 896, 162966 (2021). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  CAS  Google Scholar 

  35. Aldama, L., Barranco, V., Centeno, T.A., Ibanez, J., Rojo, J.M.: Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one. J. Electrochem. Soc. 163, A758–A765 (2016). https://doi.org/10.1149/2.1061605jes

    Article  CAS  Google Scholar 

  36. Qie, L., Chen, W., Xu, H., Xiong, X., Jiang, Y., Zou, F., Huang, Y.: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013). https://doi.org/10.1039/c7nr07158b

    Article  CAS  Google Scholar 

  37. Lv, Y., Gan, L., Liu, M., Xiong, W., Xu, Z., Zhu, D., Wright, D.S.: A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sour. 209, 152–157 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.089

    Article  CAS  Google Scholar 

  38. Huang, Y.X., Candelaria, S.L., Li, Y.W., Li, Z.M., Tian, J.J., Zhang, L.L., Cao, G.Z.: Sulfurized activated carbon for high energy density supercapacitors. J. Power Sour. 252, 90–97 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.004

    Article  CAS  Google Scholar 

  39. Xu, X., Shen, J., Na, L., et al.: Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 150, 23–34 (2014). https://doi.org/10.1016/j.electacta.2014.10.139

    Article  CAS  Google Scholar 

  40. Jingfeng, L., Zhengfu, et al.: Flower-like WO3/CoWO4/Co nanostructures as high-performance anode for lithium-ion batteries. J. Alloys Compd. 727, 107–113 (2017). https://doi.org/10.1016/j.jallcom.2017.08.057

    Article  CAS  Google Scholar 

  41. Xu, X., Gao, J., Huang, G., et al.: Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 174, 837–845 (2015). https://doi.org/10.1016/j.electacta.2015.04.159

    Article  CAS  Google Scholar 

  42. Xiaowei, Xu., Pei, L., et al.: Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloys Compd. 654, 23–31 (2016). https://doi.org/10.1016/j.jallcom.2015.09.108

    Article  CAS  Google Scholar 

  43. Gomez, J., Kalu, E.E.: High-performance binder-free Co-Mn composite oxidesupercapacitor electrode. J. Power Sour. 230, 218–224 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.069

    Article  CAS  Google Scholar 

  44. Shin, W.H., Jeong, H.M., Kim, B.G., Kang, J.K., Choi, J.W.: Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12, 2283 (2012). https://doi.org/10.1021/nl3000908

    Article  CAS  PubMed  Google Scholar 

  45. Tri, N.L.M., Duc, D.S., Van Thuan, D., Al Tahtamouni, T., Pham, T.D., Tran, D.T., Le Chi, N.T.P.: Superior photocatalytic activity of Cu doped NiWO4 for efficient degradation of benzene in air even under visible radiation. Chem. Phys. 525, 110411 (2019). https://doi.org/10.1016/j.chemphys.2019.110411

    Article  CAS  Google Scholar 

  46. Guo, D., Zhang, L., Song, X., et al.: NiCo2O4 nanosheets grown on interconnected honeycomb-like porous biomass carbon for high performance asymmetric supercapacitor. New J. Chem. 42, 8478–8484 (2018). https://doi.org/10.1039/c8nj00515j

    Article  CAS  Google Scholar 

  47. Zawawi, S.M.M., Yahya, R., Hassan, A., Mahmud, H.N.M.E., Daud, M.N.: Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 7, 1–10 (2013). https://doi.org/10.1186/1752-153X-7-80

    Article  CAS  Google Scholar 

  48. de Oliveira, A.L.M., Ferreira, J.M., Silva, M.R.S., Souza, S.C., Vieira, F.T.G., Longo, E., Souza, A.G., Santos, I.M.G.: Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4. J. Therm. Anal. Calorim. 97, 167–172 (2009). https://doi.org/10.1007/s10973-009-0244-8

    Article  CAS  Google Scholar 

  49. Pandey, P.K., Bhave, N.S., Kharat, R.B.: Structural, optical, electrical and photovoltaic electrochemical characterization of spray deposited NiWO4 thin films. Electrochim. Acta 51, 4659–4664 (2006). https://doi.org/10.1016/j.electacta.2005.12.042

    Article  CAS  Google Scholar 

  50. Zhu, J., Li, W.Z., Li, J., Li, Y.M., Hu, H.S., Yang, Y.H.: Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim. Acta 112, 191–198 (2013). https://doi.org/10.1016/j.electacta.2013.08.146

    Article  CAS  Google Scholar 

  51. Chatterjee, M., Pradhan, K.S., Saha, S., et al.: Mn-doped NiWO4 quantum dots with superior electrochemical and conductivity performance for energy storage application. J. Energy Storage 56, 105946 (2022). https://doi.org/10.1016/j.est.2022.105946

    Article  Google Scholar 

  52. Farsi, H., Hosseini, S.A.: The electrochemical behaviors of methylene blue on the surface of nanostructured NiWO4 prepared by coprecipitation method. J. Solid State Electrochem. 17, 2079–2086 (2013). https://doi.org/10.1007/s10008-013-2068-5

    Article  CAS  Google Scholar 

  53. Ross-Medgaarden, E.I., Wachs, L.E.: Structural determination of bulk and surface tungsten oxides with UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy. J. Phys. Chem. C 111, 15089–15099 (2007). https://doi.org/10.1021/jp074219c

    Article  CAS  Google Scholar 

  54. Seyyedamirhossein, H., Hossein, F., Shokufeh, M., Tykhon, Z., Ian, V.L., Andrew, R., Dennis, G.P., Zhihai, L.: Nickel tungstate (NiWO4) nanoparticles/graphene composites: preparation and photoelectrochemical applications. Semicond. Sci. Technol. 33, 055008 (2018). https://doi.org/10.1088/1361-6641/aab938

    Article  CAS  Google Scholar 

  55. Su, X.R., Xu, Y.Y., Liu, J.L., Wang, R.M.: Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 17, 4859–4864 (2015). https://doi.org/10.1039/c5ce00310e

    Article  CAS  Google Scholar 

  56. Goubard-Bretesche, N., et al.: Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J. Power Sour. 326, 695–701 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.075

    Article  CAS  Google Scholar 

  57. He, G.J., Li, J.M., Li, W.Y., Li, B., Noor, N., Xu, K.B., Hu, J.Q., Parkin, I.P.: One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanos-tructures that act as high performance electrochemical capacitor electrode. J. Mater. Chem. A 3, 14272–14278 (2015). https://doi.org/10.1039/c5ta01598g

    Article  CAS  Google Scholar 

  58. Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Mater. Sci. 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  59. Gogotsi, Y., Penner, R.M.: Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like. ACS Nano 12, 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914

    Article  CAS  PubMed  Google Scholar 

  60. Min, S.D., Zhao, C.J., Chen, G.R., Zhang, Z.M., Qian, X.Z.: One-pot hydrothermalsynthesis of 3D flower-like RGO/Co3O4/Ni(OH)2 composite film on nickel foamfor high-performance supercapacitors. Electrochim. Acta 135, 336–344 (2014). https://doi.org/10.1016/j.electacta.2014.05.032

    Article  CAS  Google Scholar 

  61. Zhu, Y., Cao, C., Tao, S., Chu, W., Wu, Z., Li, Y.: UItrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 4, 5787 (2014). https://doi.org/10.1038/srep05787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chu, D., Guo, D., Xiao, B., et al.: 3D hollow flower-like CoWO4 derived from ZIF-67 grown on Ni-foam for high-performance asymmetrical supercapacitors. Chem. Asian J. 15, 1750–1755 (2020). https://doi.org/10.1002/asia.202000334

    Article  CAS  PubMed  Google Scholar 

  63. Lokhande, V.: 1.5V symmetric supercapacitor device based on hydrothermally synthesized carbon nanotubes and cobalt tungstate nanocomposite electrodes. Mater. Chem. Phys. 211, 214–224 (2018). https://doi.org/10.1016/j.matchemphys.2018.02.039

    Article  CAS  Google Scholar 

  64. Chu, H., Zhang, F., Pei, L., Cui, Z., Shen, J., Ye, M.: Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J. Alloys Compd. 767, 583–591 (2018). https://doi.org/10.1016/j.jallcom.2018.07.126

    Article  CAS  Google Scholar 

  65. Chao, D., Liang, P., Chen, Z., et al.: Pseudo-capacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoar-rays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Z., Rafai, S., Qiao, C., Jia, J., Zhu, Y., Ma, X., Cao, C.: Microwave-assisted synthesis of CuS hierarchical nanosheets as the cathode material for high-capacity rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 11(7), 7046–7054 (2019). https://doi.org/10.1021/acsami.8b20533

    Article  CAS  PubMed  Google Scholar 

  67. Naveed, M., Younas, W., Zhu, Y.: Template free and facile microwave-assisted synthesis method to prepare mesoporous copper sulfide nanosheets for high-performance hybrid supercapacitor. Electrochim. Acta 319, 49–60 (2019). https://doi.org/10.1016/j.electacta.2019.06.169

    Article  CAS  Google Scholar 

  68. Yin, B., Cao, X., Pan, A., et al.: Encapsulation of CoSx nanocrystals into N/S Co-doped honeycomb-like 3D porous carbon for high-performance lithium storage. Adv. Sci. 5, 1800829 (2018). https://doi.org/10.1002/advs.201800829

    Article  CAS  Google Scholar 

  69. Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., Wei, F.: Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Func. Mater. 21(12), 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058

    Article  CAS  Google Scholar 

  70. Jing, T., Mingming, C., Hui, X.: Zn ion-doped amorphous NiWO4 nanospheres as cathode materialfor high-performance asymmetric supercapacitors. J. Electron. Mater. 50, 7240–7249 (2021). https://doi.org/10.1007/s11664-021-09219-6

    Article  CAS  Google Scholar 

  71. He, Y., Wang, L., Jia, D., et al.: NiWO4/Ni/carbon composite fibres for supercapacitors with excellent cycling performance. Electrochim. Acta 222, 46–454 (2016). https://doi.org/10.1016/j.electacta.2016.10.197

    Article  CAS  Google Scholar 

  72. Chen, S., Yang, G., Jia, Y., Zheng, H.: Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem 3(9), 1490–1496 (2016). https://doi.org/10.1002/celc.201600316

    Article  CAS  Google Scholar 

  73. Zhu, Y.Q., Cao, C.B., Tao, S., Chu, W.S., Wu, Z.Y., Li, Y.D.: Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 4, 5787–5794 (2014). https://doi.org/10.1038/srep05787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Araújo, A.J.M., Silva, V.D., Sousa, A.R.O., Grilo, J.P.F., Simoes, T.A., Macedo, D.A., Nascimento, R.M., Paskocimas, C.A.: Battery-like behavior of Ni-ceria based systemis: synthesis, surface defects and electrochemical assessment. Ceram. Int. 45, 7157–7165 (2019). https://doi.org/10.1016/j.ceramint.2018.12.222

    Article  CAS  Google Scholar 

  75. Torres, M., et al.: Green synthesis of CoWO4 powders using agar-agar from red seaweed (Rhodophyta): structure, magnetic properties and battery-like behavior. Mater. Chem. Phys. 242, 122544 (2020). https://doi.org/10.1016/j.matchemphys.2019.122544

    Article  CAS  Google Scholar 

  76. Li, L., Zhang, J., Peng, Z., et al.: High-performance pseudo-capacitive microsuperca-pacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2016). https://doi.org/10.1002/adem.202200368

    Article  CAS  PubMed  Google Scholar 

  77. Hekmat, F., Tutel, Y., Unalan, H.E.: Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics. Int. J. Energy Res. 44, 7603–7616 (2020). https://doi.org/10.1002/er.5493

    Article  CAS  Google Scholar 

  78. Devaraj, S., Liu, H.Y., Balaya, P.: MnCO3: a novel electrode material for supercapacitors. J. Mater. Chem. A 2(12), 4276–4281 (2014). https://doi.org/10.1039/C3TA14174H

    Article  CAS  Google Scholar 

  79. Wang, Y., et al.: High-rate capability of mesoporous NiWO4-CoWO4 nanocomposite as a positive material for hybrid supercapacitor. Mater. Chem. Phys. 182, 394–401 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.047

    Article  CAS  Google Scholar 

  80. Niu, L.Y., Li, Z.P., Xu, Y., Sun, J.F., Hong, W., Liu, X.H., Wang, J.Q., Yang, S.R.: Simple synthesis of amorphous NiWO4 nanostructure and its application as a novelcathode material for asymmetric supercapacitors. ACS Appl. Mater. Int. 5, 8044–8052 (2013). https://doi.org/10.1021/am402127u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (51503092, 51763015), the Program for Hongliu First-class Discipline Construction in Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 578 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Xu, H., Chen, Y. et al. Effect of Co2+ Doping on Electrochemical Properties of Nickel Metal Tungstate (NiWO4) Positive Material. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00493-0

Keywords

Navigation