Skip to main content
Log in

Self-Healing of Kirkendall Voids and IMC Growth in the Interfacial Reaction of Novel Ni/Cu bi-layer Barrier and Solder

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Single Ni layer is often inserted as diffusion barrier between Cu pillar and Sn-based solder to avoid excessive growth of brittle intermetallic compounds (IMCs) and consequent Kirkendall voids (KVs) in microbumps. However, with shrinking size of microbumps, Ni layer cannot maintain the inhibition performance as its thickness is reduced as well. In this work, Ni/Cu bi-layer barrier was employed at Cu-Sn interface, which was expected to reduce diffusion by rapidly generated Cu-Sn IMC retarding the diffusion of Ni. IMC growth behavior and interfacial reaction during isothermal aging were investigated. The self-healing phenomenon of KVs was detected during aging at 150 °C . It’s attributed to the transformation from Cu3Sn to Cu6Sn5. The novel barrier exhibited excellent inhibition property compared with single Ni layer with slower IMC growth rate and less Cu substrate diffusion. Moreover, during 170 °C aging test, the Ni/Cu bi-layer barrier showed no sign of depletion until 600 h, while the single Ni barrier was completely depleted after 144 h. Such excellent inhibition property is beneficial to the future application of ultra-thin barrier layer in microbumps.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tu, K.-N., Liu, Y.: Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology. Mater. Sci. Engineering: R: Rep. 136, 1–12 (2019). https://doi.org/10.1016/j.mser.2018.09.002

    Article  Google Scholar 

  2. Liu, Y., Chu, Y.-C., Tu, K.-N.: Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 µm diameter. Acta Mater. 117, 146–152 (2016). https://doi.org/10.1016/j.actamat.2016.07.004

    Article  CAS  Google Scholar 

  3. Pal, M.K., Bajaj, V.: Nucleation and location of Kirkendall Voids at the tin-based Solder/Copper Joint: A review. Adv. Eng. Mater. 2300671 (2023). https://doi.org/10.1002/adem.202300671

  4. Huang, T., Liu, S., Ling, H., Li, M., Hu, A., Gao, L., Hang, T.: Growth behavior and morphology of sidewall intermetallic compounds in Cu/Ni/sn-Ag microbumps during multiple reflows. Mater. Lett. 326, 132887 (2022). https://doi.org/10.1016/j.matlet.2022.132887

    Article  CAS  Google Scholar 

  5. Chen, J., Yang, J., Zhang, Y., Yu, Z., Zhang, P.: Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints. Weld. World. 63, 751–757 (2019). https://doi.org/10.1007/s40194-019-00704-5

    Article  CAS  Google Scholar 

  6. Njuki, M., Thekkut, S., Das, R., Shahane, N., Thompson, P., Mirpuri, K., Borgesen, P., Dimitrov, N.: Understanding and preventing Cu–Sn micro joint defects through design and process control. J. Appl. Electrochem. 1–13 (2022). https://doi.org/10.1007/s10800-021-01630-5

  7. Njuki, M., Thekkut, S., Sivasubramony, R., Greene, C., Shahane, N., Thompson, P., Mirpuri, K., Borgesen, P., Dimitrov, N.: Enhanced voiding in Cu-Sn micro joints. Mater. Res. Bull. 150, 111759 (2022). https://doi.org/10.1016/j.materresbull.2022.111759

    Article  CAS  Google Scholar 

  8. Baheti, V.A., Kashyap, S., Kumar, P., Chattopadhyay, K., Paul, A.: Solid–state diffusion–controlled growth of the intermediate phases from room temperature to an elevated temperature in the Cu–Sn and the Ni–Sn systems. J. Alloys Compd. 727, 832–840 (2017). https://doi.org/10.1016/j.jallcom.2017.08.178

    Article  CAS  Google Scholar 

  9. Liu, S., Yang, C., Ling, H., Hu, A., Hang, T., Gao, L., Li, M.: Inhibiting effects of the Ni barrier layer on the growth of porous Cu3Sn in 10-µm microbumps. J. Mater. Sci.: Mater. Electron. 32, 17655–17661 (2021). https://doi.org/10.1007/s10854-021-06301-x

    Article  CAS  Google Scholar 

  10. Park, G.-T., Lee, B.-R., Son, K., Park, Y.-B.: Ni barrier symmetry effect on electromigration failure mechanism of Cu/Sn–Ag microbump. Electron. Mater. Lett. 15, 149–158 (2019). https://doi.org/10.1007/s13391-018-00108-5

    Article  CAS  Google Scholar 

  11. Chuang, H., Yang, T., Kuo, M., Chen, Y., Yu, J., Li, C., Kao, C.R.: Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Device Mater. Reliab. 12, 233–240 (2012). https://doi.org/10.1109/TDMR.2012.2185239

    Article  CAS  Google Scholar 

  12. Yang, H., Wu, J., Zhu, Z., Kao, C.: Effects of surface diffusion and reaction-induced volume shrinkage on morphological evolutions of micro joints. Mater. Chem. Phys. 191, 13–19 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.022

    Article  CAS  Google Scholar 

  13. Lee, B., Jeon, H., Kwon, K.-W., Lee, H.-J.: Employment of a bi-layer of Ni (P)/Cu as a diffusion barrier in a Cu/Sn/Cu bonding structure for three-dimensional interconnects. Acta Mater. 61, 6736–6742 (2013). https://doi.org/10.1016/j.actamat.2013.07.043

    Article  CAS  Google Scholar 

  14. Huang, K.-C., Shieu, F.-S., Hsiao, Y., Liu, C.: Ni interdiffusion coefficient and activation energy in Cu 6 Sn 5. J. Electron. Mater. 41, 172–175 (2012). https://doi.org/10.1007/s11664-011-1821-8

    Article  CAS  Google Scholar 

  15. Nogita, K., Nishimura, T.: Nickel-stabilized hexagonal (Cu, Ni) 6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scripta Mater. 59, 191–194 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.002

    Article  CAS  Google Scholar 

  16. Nogita, K.: Stabilisation of Cu6Sn5 by ni in Sn-0.7 Cu-0.05 ni lead-free solder alloys. Intermetallics. 18, 145–149 (2010). https://doi.org/10.1016/j.intermet.2009.07.005

    Article  CAS  Google Scholar 

  17. Chen, K., Ling, H., Guo, F., Li, M., Zhang, W., Cao, L.: Effect of Ni barrier layer thickness on IMCs evolution in Ф5µm Cu/Ni/Sn pillar bumps, 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, pp. 190–194. (2018). https://doi.org/10.1109/ICEPT.2018.8480711

  18. Sobiech, M., Krüger, C., Welzel, U., Wang, J.-Y., Mittemeijer, E.J., Hügel, W.: Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics. J. Mater. Res. 26, 1482–1493 (2011). https://doi.org/10.1557/jmr.2011.162

    Article  CAS  Google Scholar 

  19. Laurila, T., Vuorinen, V., Kivilahti, J.: Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Engineering: R: Rep. 49, 1–60 (2005). https://doi.org/10.1016/j.mser.2005.03.001

    Article  CAS  Google Scholar 

  20. Lin, K., Ling, H., Hu, A., Wu, Y., Gao, L., Hang, T., Li, M.: Growth behavior and formation mechanism of porous Cu3Sn in Cu/Sn solder system. Mater. Charact. 178, 111271 (2021). https://doi.org/10.1016/j.matchar.2021.111271

    Article  CAS  Google Scholar 

  21. Ho, C.E., Kuo, T.T., Wang, C.C., Wu, W.H.: Inhibiting the growth of Cu 3 Sn and Kirkendall voids in the Cu/Sn-Ag-Cu system by minor pd alloying. Electron. Mater. Lett. 8, 495–501 (2012). https://doi.org/10.1007/s13391-012-2049-3

    Article  CAS  Google Scholar 

  22. Pal, M.K., Gergely, G., Koncz-Horváth, D., Gácsi, Z.: Investigation of microstructure and wetting behavior of Sn–3.0 Ag–0.5 cu (SAC305) lead-free solder with additions of 1.0 wt% SiC on copper substrate. Intermetallics. 128, 106991 (2021). https://doi.org/10.1016/j.intermet.2020.106991

    Article  CAS  Google Scholar 

  23. Pal, M.K., Gergely, G., Gácsi, Z.: Growth kinetics and IMCs layer analysis of SAC305 solder with the reinforcement of SiC during the isothermal aging condition. J. Mater. Res. Technol. 24, 8320–8331 (2023). https://doi.org/10.1016/j.jmrt.2023.05.091

    Article  CAS  Google Scholar 

  24. Yu, J., Kim, J.: Effects of residual S on Kirkendall void formation at Cu/Sn–3.5 ag solder joints. Acta Mater. 56, 5514–5523 (2008). https://doi.org/10.1016/j.actamat.2008.07.022

    Article  CAS  Google Scholar 

  25. Zhou, S., Zhang, Y.-B., Gao, L.-Y., Li, Z., Liu, Z.-Q.: The self-healing of Kirkendall voids on the interface between Sn and (1 1 1) oriented nanotwinned Cu under thermal aging. Appl. Surf. Sci. 588, 152900 (2022). https://doi.org/10.1016/j.apsusc.2022.152900

    Article  CAS  Google Scholar 

  26. Somidin, F., Maeno, H., Salleh, M.M., Tran, X.Q., McDonald, S.D., Matsumura, S., Nogita, K.: Characterising the polymorphic phase transformation at a localised point on a Cu6Sn5 grain. Mater. Charact. 138, 113–119 (2018). https://doi.org/10.1016/j.matchar.2018.02.006

    Article  CAS  Google Scholar 

  27. Lee, L.M., Mohamad, A.A.: Interfacial reaction of Sn-Ag-Cu lead-free solder alloy on Cu: A review. Adv. Mater. Sci. Eng. 2013 (2013). https://doi.org/10.1155/2013/123697

  28. Zuozhu, Y., Sun, F., Guo, M.: Effect of Sn/Cu thickness ratio on the transformation law of Cu6Sn5 to Cu3Sn in Sn/Cu interface during aging. Mater. Res. Express. 5, 086503 (2018). https://doi.org/10.1088/2053-1591/aad126

    Article  CAS  Google Scholar 

  29. Li, D., Franke, P., Fürtauer, S., Cupid, D., Flandorfer, H.: The Cu–Sn phase diagram part II: New thermodynamic assessment. Intermetallics. 34, 148–158 (2013). https://doi.org/10.1016/j.intermet.2012.10.010

    Article  CAS  Google Scholar 

  30. Gösele, U., Tu, K.-N.: Growth kinetics of planar binary diffusion couples:’’thin-film case’’versus’’bulk cases’’. J. Appl. Phys. 53, 3252–3260 (1982). https://doi.org/10.1063/1.331028

    Article  Google Scholar 

  31. Mita, M., Kajihara, M., Kurokawa, N., Sakamoto, K.: Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures. Mater. Sci. Engineering: A. 403, 269–275 (2005). https://doi.org/10.1016/j.msea.2005.05.012

    Article  CAS  Google Scholar 

  32. Tseng, Y.-C., Lee, H., Tsai, S.-C., Yen, Y.-W., Chen, C.-M.: Suppression effect of Ni grain size on the Ni3Sn4 growth at the Sn/Ni interface. Mater. Charact. 128, 232–237 (2017). https://doi.org/10.1016/j.matchar.2017.04.013

    Article  CAS  Google Scholar 

  33. Li, Z., Dong, H., Song, X., Zhao, H., Tian, H., Liu, J., Feng, J., Yan, J.: Homogeneous (Cu, Ni) 6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process. Ultrason. Sonochem. 42, 403–410 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  34. Kodentsov, A., Wojewoda-Budka, J., Litynska-Dobrzynska, L., Zieba, P., Wierzbicka-Miernik, A.: Formation of intermetallic compounds in reaction between Cu–Ni alloys and solid Sn–a new look at the prominent effect of Ni. J. Alloys Compd. 858, 157677 (2021). https://doi.org/10.1016/j.jallcom.2020.157677

    Article  CAS  Google Scholar 

  35. Ghosh, G.: Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn–Pb solder and Cu/Ni/Pd metallization. Acta Mater. 48, 3719–3738 (2000). https://doi.org/10.1016/S1359-6454(00)00165-8

    Article  CAS  Google Scholar 

  36. Onishi, M., Fujibuchi, H.: Reaction-diffusion in the Cu–Sn system. Trans. Japan Inst. Met. 16, 539–547 (1975). https://doi.org/10.2320/matertrans1960.16.539

    Article  CAS  Google Scholar 

  37. Yuan, Y., Guan, Y., Li, D., Moelans, N.: Investigation of diffusion behavior in Cu–Sn solid state diffusion couples. J. Alloys Compd. 661, 282–293 (2016). https://doi.org/10.1016/j.jallcom.2015.11.214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Basic Research Program of China (973 Program, 2015CB057200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqin Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, C., Chen, P. et al. Self-Healing of Kirkendall Voids and IMC Growth in the Interfacial Reaction of Novel Ni/Cu bi-layer Barrier and Solder. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00492-1

Keywords

Navigation