Skip to main content
Log in

Exploration about the Electrolyte System of Li-ion Batteries for the Wide Temperature Range Operation

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) have garnered great attention owing to their high specific energy and power compared with other batteries. Currently, the use of LIBs is expanded to the power source of mid- or large-sized devices such as electric vehicles, energy storage devices, and so on. For the stable operation of such devices, LIBs should deliver their battery performance under the daily-life temperature, i.e., from − 20 to 60 °C. In so far as, direct modification of the electrolyte system is considered the most effective among various strategies. Herein, we investigated various carbonate-based electrolyte systems for LIBs. The effect of the compositions and additives of the electrolyte on the battery performance was scrutinized. Therefore, we could provide an understanding of the electrolyte design rule, which enables LIBs to work under the desired temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 5(4), 329–332 (2015)

    Article  Google Scholar 

  2. Tran, M., et al.: Realizing the electric-vehicle revolution. Nat. Clim. Chang. 2(5), 328–333 (2012)

    Article  Google Scholar 

  3. Kim, J., et al.: A stepped mesh host for lithium metal batteries inspired by transmission electron microscopy sampling grids. Electron. Mater. Lett. (2023). https://doi.org/10.1007/s13391-023-00474-9

    Article  Google Scholar 

  4. Kang, C.-Y., et al.: Boosting electrochemical performance of Ni-rich layered cathode Via Li2SnO3 surface coating and sn4+ gradient doping based dual modification for lithium-ion batteries. Electron. Mater. Lett. 19(4), 374–383 (2023)

    Article  CAS  Google Scholar 

  5. Feng, Y., et al.: Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022)

    Article  CAS  Google Scholar 

  6. Zhang, X., Yang, Y., Zhou, Z.: Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Gupta, A., Manthiram, A.: Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dahn, J.R., et al.: Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138(8), 2207 (1991)

    Article  CAS  Google Scholar 

  9. Xu, K., Ding, M.S., Jow, T.R.: Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors. J. Electrochem. Soc. 148(3), A267 (2001)

    Article  CAS  Google Scholar 

  10. Jasinski, R.J., Kirkland, S.: Analysis and distillation of propylene carbonate. Anal. Chem. 39(13), 1663–1665 (1967)

    Article  CAS  Google Scholar 

  11. Owen, J.R.: Rechargeable lithium batteries. Chem. Soc. Rev. 26(4), 259–267 (1997)

    Article  CAS  Google Scholar 

  12. Sun, X., et al.: Improved elevated temperature cycling of LiMn2 O 4 spinel through the use of a composite LiF-based electrolyte. Electrochem. Solid-State Lett. 4(11), A184 (2001)

    Article  CAS  Google Scholar 

  13. Markevich, E., et al.: Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Langmuir 30(25), 7414–7424 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Komaba, S., et al.: Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3(11), 4165–4168 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Peled, E., et al.: An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145(10), 3482 (1998)

    Article  CAS  Google Scholar 

  16. Aurbach, D., et al.: A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power. Sources 97–98, 28–32 (2001)

    Article  Google Scholar 

  17. Le Mehaute, A., et al.: Polymer electrolytes. Polym. Bull. 14(3), 233–237 (1985)

    Article  Google Scholar 

  18. Tarascon, J.M., Guyomard, D.: New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics 69(3), 293–305 (1994)

    Article  CAS  Google Scholar 

  19. Zhang, S.S., Xu, K., Jow, T.R.: A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 4(11), 928–932 (2002)

    Article  CAS  Google Scholar 

  20. Zhang, N., et al.: Critical review on low-temperature Li-Ion/metal batteries. Adv. Mater. 34(15), 2107899 (2022)

    Article  CAS  Google Scholar 

  21. Yuan, M., Liu, K.: Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 43, 58–70 (2020)

    Article  Google Scholar 

  22. Wang, Y., et al.: Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123(47), 11708–11718 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X., et al.: A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652 (2022)

    Article  CAS  Google Scholar 

  24. Guyomard, D., Tarascon, J.M.: Rechargeable Li1 + x Mn2 O 4/carbon cells with a new electrolyte composition: potentiostatic studies and application to practical cells. J. Electrochem. Soc. 140(11), 3071 (1993)

    Article  CAS  Google Scholar 

  25. Aurbach, D., et al.: The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. graphite electrodes. J. Electrochem. Soc. 142(9), 2882 (1995)

    Article  CAS  Google Scholar 

  26. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power. Sources 162(2), 1379–1394 (2006)

    Article  CAS  Google Scholar 

  28. Nie, M., et al.: Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-Ion batteries. J. Electrochem. Soc. 162(13), A7008–A7014 (2015)

    Article  CAS  Google Scholar 

  29. Nguyen, C.C., Lucht, B.L.: Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J. Electrochem. Soc. 161(12), A1933–A1938 (2014)

    Article  Google Scholar 

  30. Burns, J.C., et al.: Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance. J. Electrochem. Soc. 160(10), A1668–A1674 (2013)

    Article  CAS  Google Scholar 

  31. Shin, H., et al.: Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures. J. Electrochem. Soc. 162(9), A1683–A1692 (2015)

    Article  CAS  Google Scholar 

  32. Teufl, T., et al.: Implications of the thermal stability of FEC-based electrolytes for Li-Ion batteries. J. Electrochem. Soc. 170(2), 020531 (2023)

    CAS  Google Scholar 

  33. Pritzl, D., et al.: Analysis of vinylene carbonate (VC) as additive in graphite/LiNi0.5Mn1.504cells. J. Electrochem. Soc. 164(12), A2625–A2635 (2017)

    Article  CAS  Google Scholar 

  34. Zhi, H., et al.: Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. J. Phys. Chem. Lett. 8(24), 6048–6052 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Farhat, D., et al.: Towards high-voltage Li-ion batteries: Reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochim. Acta 281, 299–311 (2018)

    Article  CAS  Google Scholar 

  36. Hu, Z., et al.: A Novel electrolyte additive enables high-voltage operation of nickel-rich oxide/graphite cells. J. Phys. Chem. Lett. 12(18), 4327–4338 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. Kerner, M., et al.: Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality. J. Power. Sources 332, 204–212 (2016)

    Article  CAS  Google Scholar 

  38. Kim, Y.S., Lee, H., Song, H.K.: Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries. ACS Appl. Mater. Interfaces 6(11), 8913–8920 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Hu, P., et al.: Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 4(26), 10070–10083 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Ministry of Trade, Industry, and Energy of Korea and supported by the Materials/ Parts Technology Development Program of the Korea Evaluation Institute of Industrial Technology (20011287). This research was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunjoong Kim or Gi-Yeong Yun.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 7668 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, OJ., Cho, YH., Kang, JJ. et al. Exploration about the Electrolyte System of Li-ion Batteries for the Wide Temperature Range Operation. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00488-x

Keywords

Navigation