Skip to main content
Log in

Ternary Organic Solar Cells—Simulation–Optimization Approach

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Organic solar cells are a rapidly expanding subfield of photovoltaics. The publication presents simulation results for organic cells with a focus on optimizing cells and maximizing performance using OghmaNano software. The efficiencies obtained from the simulation of the ternary solar devices were received. The efficiency achieved from simulations for the mobility of charge carriers as well as the dependence of the performance on the effective density from free electron and hole states were simulated. The most favorable ratios of hole and electron mobility and charge carrier densities were determined in terms of device efficiency. The impact of loss processes on the cell efficiency was also investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joseph, J.D., Jasmin, M., Sidharth, S.R.: Fabrication and characterization of silicon solar cells towards improvement of power efficiency. Mater. Today Proc. 62, 2050–2055 (2022). https://doi.org/10.1016/J.MATPR.2022.02.493

    Article  Google Scholar 

  2. Chatterjee, A., Ravindra, A.V., Kiran Kumar, G., Rajesh, C.: Improvement in the light conversion efficiency of silicon solar cell by spin coating of CuO, ZnO nanoparticles and CuO/ZnO mixed metal nanocomposite material. J. Indian Chem. Soc. 99, 100653 (2022). https://doi.org/10.1016/J.JICS.2022.100653

    Article  CAS  Google Scholar 

  3. Akshay, V.V., Benny, S., Bhat, S.V.: Solution-processed antimony chalcogenides based thin film solar cells: a brief overview of recent developments. Sol. Energy 241, 728–737 (2022). https://doi.org/10.1016/J.SOLENER.2022.06.042

    Article  ADS  CAS  Google Scholar 

  4. Vijayan, K., Vijayachamundeeswari, S.P., Sivaperuman, K., Ahsan, N., Logu, T., Okada, Y.: A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Sol. Energy 234, 81–102 (2022). https://doi.org/10.1016/J.SOLENER.2022.01.070

    Article  ADS  CAS  Google Scholar 

  5. Wang, L., Hu, M., Zhang, Y., Yuan, Z., Hu, Y., Zhao, X., Chen, Y.: High molecular weight polymeric acceptors based on semi-perfluoroalkylated perylene diimides for pseudo-planar heterojunction all-polymer organic solar cells. Polymer (Guildf). 255, 125114 (2022). https://doi.org/10.1016/J.POLYMER.2022.125114

    Article  CAS  Google Scholar 

  6. Lee, S., Yang, H.S., Song, S., Lee, W., Lee, W.K., Park, S.H., Kim, J.Y., Jin, Y.: A low bandgap conjugated polymer bearing a phenazine moiety for application in organic solar cells. Synth. Met. 289, 117114 (2022). https://doi.org/10.1016/J.SYNTHMET.2022.117114

    Article  CAS  Google Scholar 

  7. Li, J., Zhao, L., Wang, S., Hu, J., Dong, B., Lu, H., Wan, L., Wang, P.: Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells. Mater. Res. Bull. 48, 2566–2570 (2013). https://doi.org/10.1016/j.materresbull.2013.03.009

    Article  CAS  Google Scholar 

  8. Kumavat, P.P., Sonar, P., Dalal, D.S.: An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew. Sustain. Energy Rev. 78, 1262–1287 (2017). https://doi.org/10.1016/j.rser.2017.05.011

    Article  Google Scholar 

  9. Jafarzadeh, F., Aghili, H., Nikbakht, H., Javadpour, S.: Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195–205 (2022). https://doi.org/10.1016/j.solener.2022.01.046

    Article  ADS  CAS  Google Scholar 

  10. Mir, F.A.: Exploring the structure as well as electrical and photovoltaic mechanism in PrFe0.5Ni0.5O3/GaAs heterojunction. Mater. Sci. Semicond. Process. 29, 206–212 (2015). https://doi.org/10.1016/j.mssp.2014.03.003

    Article  CAS  Google Scholar 

  11. Emrul Kayesh, M., Matsuishi, K., Chowdhury, T.H., Kaneko, R., Noda, T., Islam, A.: Enhanced photovoltaic performance of perovskite solar cells by copper chloride (CuCl2) as an additive in single solvent perovskite precursor. Electron. Mater. Lett. 14, 712–717 (2018). https://doi.org/10.1007/S13391-018-0075-5/TABLES/1

    Article  ADS  CAS  Google Scholar 

  12. Zheng, Z., Yao, H., Ye, L., Xu, Y., Zhang, S., Hou, J.: PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today (2019). https://doi.org/10.1016/j.mattod.2019.10.023

    Article  Google Scholar 

  13. Shi, M., Sun, R., Wang, T., Luo, Z., Guo, J., Guo, J., Yang, C., Min, J.: Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells. Org. Electron. 85, 105880 (2020). https://doi.org/10.1016/j.orgel.2020.105880

    Article  CAS  Google Scholar 

  14. Sun, R., Wang, W., Yu, H., Chen, Z., Xia, X.X., Shen, H., Guo, J., Shi, M., Zheng, Y., Wu, Y., Yang, W., Wang, T., Wu, Q., (Michael) Yang, Y., Lu, X., Xia, J., Brabec, C.J., Yan, H., Li, Y., Min, J.: Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 5, 1548–1565 (2021). https://doi.org/10.1016/J.JOULE.2021.04.007

    Article  CAS  Google Scholar 

  15. Wang, Y., Zhuang, C., Fang, Y., Yu, H., Wang, B.: Various roles of dye molecules in organic ternary blend solar cells. Dye. Pigment. 176, 108231 (2020). https://doi.org/10.1016/j.dyepig.2020.108231

    Article  CAS  Google Scholar 

  16. Fan, H., Shang, H., Li, Y., Zhan, X.: Efficiency enhancement in small molecule bulk heterojunction organic solar cells via additive. Appl. Phys. Lett. 97, 133302 (2010). https://doi.org/10.1063/1.3491268

  17. Wan, Z., Jia, C., Wang, Y., Luo, J., Yao, X.: Significant improvement of phenothiazine organic dye-sensitized solar cell performance using dithiafulvenyl unit as additional donor. Org. Electron. 27, 107–113 (2015). https://doi.org/10.1016/J.ORGEL.2015.09.009

    Article  CAS  Google Scholar 

  18. Liu, J., Zhao, S., Huang, Y., Xu, Z., Qiao, B., Yang, L., Zhu, Y., Li, Z., Yuan, B., Xu, X.: Improving charge transport and suppressing charge recombination in small molecule ternary solar cells via incorporating Bis-PC71BM as a cascade material. Org. Electron. 46, 126–132 (2017). https://doi.org/10.1016/j.orgel.2017.03.030

    Article  CAS  Google Scholar 

  19. Clugston, D.A., Basore, P.A.: PC1D version 5: 32-bit solar cell modeling on personal computers. Undefined (1997). https://doi.org/10.1109/PVSC.1997.654065

    Article  Google Scholar 

  20. Stangl, R., Leendertz, C., Haschke, J.: Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. Sol. Energy (2010). https://doi.org/10.5772/8073

    Article  Google Scholar 

  21. A. Froitzheim, R. Stangl, L. Elstner, M. Kriegel, W. Fuhs, AFORS-HET: A computer-program for the simulation of hetero-junction solar cells to be distributed for public use. In: Proceedings 3rd World Conference Photovoltaic Energy Conversion, 2003. (pp. 279–282).

  22. Bilgic Aksari, M., Eray, A.: Optimization of a Si HcSi heterojunction solar cells by numerical simulation. Energy Procedia. 10, 101–105 (2011). https://doi.org/10.1016/j.egypro.2011.10.160

    Article  CAS  Google Scholar 

  23. Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

  24. Gutiérrez-González, I., Molina-Brito, B., Götz, A.W., Castillo-Alvarado, F.L., Rodríguez, J.I.: Structural and electronic properties of the P3HT-PCBM dimer: a theoretical Study. Chem. Phys. Lett. 612, 234–239 (2014). https://doi.org/10.1016/J.CPLETT.2014.08.030

    Article  ADS  Google Scholar 

  25. Dyer-Smith, C., Nelson, J., Li, Y.: Organic Solar Cells. McEvoys Handb. Photovolt. Fundam. Appl. (2018). https://doi.org/10.1016/B978-0-12-809921-6.00015-X

    Article  Google Scholar 

  26. Groves, C., Greenham, N.C.: Bimolecular recombination in polymer electronic devices. Phys. Rev. B 78, 155205 (2008). https://doi.org/10.1103/PHYSREVB.78.155205/FIGURES/4/MEDIUM

    Article  ADS  Google Scholar 

  27. MacKenzie, R.C.I., Shuttle, C.G., Chabinyc, M.L., Nelson, J.: Extracting Microscopic device parameters from transient photocurrent measurements of P3HT: PCBM solar cells. Adv. Energy Mater. 2, 662–669 (2012). https://doi.org/10.1002/AENM.201100709

    Article  CAS  Google Scholar 

  28. Wasule, S.R., O’carroll D.M., Theory and analysis of the luminance of top-emitting and bottom-emitting OLEDs, (2021). https://doi.org/10.7282/T3-BDP6-BH09.

  29. Kowsar, A., Billah, M., Dey, S., Debnath, S.C., Yeakin, S., Uddinfarhad, S.F.: Comparative Study on Solar Cell Simulators. ICIET 2019–2nd Int Conf. Innov. Eng. Technol. (2019). https://doi.org/10.1109/ICIET48527.2019.9290675

    Article  Google Scholar 

  30. Lewinska, G.: Materials for D-D-A ternary organic solar cells: An absorption model study. Adv. Opt. Technol. 9, 155–160 (2020). https://doi.org/10.1515/aot-2019-0055

    Article  ADS  CAS  Google Scholar 

  31. Coropceanu, V., Cornil, J., Olivier, Y., Silbey, R., Bredas, J.L., da Silva Filho, D.A.: Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007). https://doi.org/10.1007/128_2011_218

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari, S., Greenham, N.C.: Charge mobility measurement techniques in organic semiconductors. Opt. Quantum Electron. 41, 69–89 (2009). https://doi.org/10.1007/s11082-009-9323-0

    Article  CAS  Google Scholar 

  33. Ullah, I., Shah, S.K., Wali, S., Hayat, K., Khattak, S.A., Khan, A.: Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer. Mater. Res. Express. 4, 125505 (2017). https://doi.org/10.1088/2053-1591/AA9DC9

    Article  ADS  Google Scholar 

  34. Larson, B.W., Whitaker, J.B., Bin Wang, X., Popov, A.A., Rumbles, G., Kopidakis, N., Strauss, S.H., Boltalina, O.V.: Electron affinity of Phenyl-C61-butyric acid methyl ester (PCBM). J. Phys. Chem. C 117, 14958–14964 (2013). https://doi.org/10.1021/JP403312G/ASSET/IMAGES/LARGE/JP-2013-03312G_0002.JPEG

    Article  CAS  Google Scholar 

  35. Brink, C., Andersen, L.H., Hvelplund, P., Mathur, D., Voldstad, J.D.: Laser photodetachment of C60–and C70–ions cooled in a storage ring. Chem. Phys. Lett. 233, 52–56 (1995). https://doi.org/10.1016/0009-2614(94)01413-P

    Article  ADS  CAS  Google Scholar 

  36. Oh, I.S., Kim, G.M., Han, S.H., Oh, S.Y.: PEDOT:PSS-free organic photovoltaic cells using tungsten oxides as buffer layer on anodes. Electron. Mater. Lett. 9, 375–379 (2013). https://doi.org/10.1007/S13391-013-0003-7/METRICS

    Article  ADS  CAS  Google Scholar 

  37. Szlachcic, P., Danel, K.S., Gryl, M., Stadnicka, K., Usatenko, Z., Nosidlak, N., Lewińska, G., Sanetra, J., Kuźnik, W.: Organic light emitting diodes (OLED) based on helical structures containing 7-membered fused rings. Dye. Pigment. 114, 184–195 (2015)

    Article  CAS  Google Scholar 

  38. Mannekutla, J.R., Ramamurthy, P., Mulimani, B.G., Inamdar, S.R.: Rotational dynamics of UVITEX-OB in alkanes, alcohols and binary mixtures. Chem. Phys. 340, 149–157 (2007). https://doi.org/10.1016/j.chemphys.2007.08.014

    Article  CAS  Google Scholar 

  39. Zhang, R., Zheng, H., Shen, J.: Blue light-emitting diodes based on coronene-doped polymers. Synth. Met. 105, 49–53 (1999)

    Article  CAS  Google Scholar 

  40. Lewińska, G., Puszyński, A., Sanetra, J.: BBOT for applications in photovoltaic cells devices and organic diodes. Synth. Met. 199, 335–338 (2015). https://doi.org/10.1016/J.SYNTHMET.2014.11.013

    Article  Google Scholar 

  41. Lewińska, G., Danel, K.S., Sanetra, J.: The bulk heterojunction cells based on new helicenes—preparation, implementation and surface examination. Sol. Energy 135, 848–853 (2016)

    Article  ADS  Google Scholar 

  42. Sinaga, J.E.E., Budianto, G., Pritama, V.L.: Suhendra, Indonesian physical review, Indones. Phys. Rev. 6, 114–123 (2023)

    Google Scholar 

  43. Wilken, S., Scheunemann, D., Dahlström, S., Nyman, M., Parisi, J., Österbacka, R.: How to reduce charge recombination in organic solar cells: there are still lessons to learn from P3HT: PCBM. Adv. Electron. Mater. (2021). https://doi.org/10.1002/AELM.202001056

    Article  Google Scholar 

  44. Li, W., Zeiske, S., Sandberg, O.J., Riley, D.B., Meredith, P., Armin, A.: Organic solar cells with near-unity charge generation yield. Energy Environ. Sci. 14, 6484 (2021). https://doi.org/10.1039/d1ee01367j

    Article  CAS  Google Scholar 

  45. Yu, R., Wu, G., Tan, Z.: Realization of high performance for PM6:Y6 based organic photovoltaic cells. J. Energy Chem. 61, 29–46 (2021). https://doi.org/10.1016/J.JECHEM.2021.01.027

    Article  CAS  Google Scholar 

  46. Guo, Q., Guo, Q., Geng, Y., Tang, A., Zhang, M., Du, M., Sun, X., Zhou, E.: Recent advances in PM6:Y6-based organic solar cells. Mater. Chem. Front. 5, 3257–3280 (2021). https://doi.org/10.1039/D1QM00060H

    Article  CAS  Google Scholar 

  47. Zhang, W., Song, W., Huang, J., Huang, L., Yan, T., Ge, J., Peng, R., Ge, Z.: Graphene: silver nanowire composite transparent electrode based flexible organic solar cells with 13.4% efficiency. J. Mater. Chem. A. 7, 22021–22028 (2019). https://doi.org/10.1039/C9TA07493G

    Article  CAS  Google Scholar 

  48. Wang, C., Xu, X., Zhang, W., Dkhil, S.B., Meng, X., Liu, X., Margeat, O., Yartsev, A., Ma, W., Ackermann, J., Wang, E., Fahlman, M.: Ternary organic solar cells with enhanced open circuit voltage. Nano Energy 37, 24–31 (2017). https://doi.org/10.1016/j.nanoen.2017.04.060

  49. Han, J., Bao, F., Huang, D., Wang, X., Yang, C., Yang, R., Jian, X., Wang, J., Bao, X., Chu, J.: A universal method to enhance flexibility and stability of organic solar cells by constructing insulating matrices in active layers. Adv. Funct. Mater. 30, 2003654 (2020). https://doi.org/10.1002/ADFM.202003654

    Article  CAS  Google Scholar 

  50. Neher, D., Kniepert, J., Elimelech, A., Jan, L., Koster, A.: A new figure of merit for organic solar cells with transport-limited photocurrents OPEN. Nat. Publ. Gr. (2016). https://doi.org/10.1038/srep24861

    Article  Google Scholar 

  51. Zhou, J., He, D., Li, Y., Huang, F., Zhang, J., Zhang, C., Yuan, Y., Lin, Y., Wang, C., Zhao, F.: Reducing trap density in organic solar cells via extending the fused ring donor unit of an A-D–A-type nonfullerene acceptor for over 17% efficiency. Adv. Mater. 35, 2207336 (2023). https://doi.org/10.1002/ADMA.202207336

    Article  CAS  Google Scholar 

  52. Leong, W.L., Cowan, S.R., Heeger, A.J.: Differential resistance analysis of charge carrier losses in organic bulk heterojunction solar cells: Observing the transition from bimolecular to trap-assisted recombination and quantifying the order of recombination. Adv. Energy Mater. 1, 517–522 (2011). https://doi.org/10.1002/aenm.201100196

    Article  CAS  Google Scholar 

  53. Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.D.C., Nelson, J.: Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 7, 158–164 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Yoon, S., Han, Y., Hwang, I.: Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells. Electron. Mater. Lett. 14, 46–51 (2018). https://doi.org/10.1007/S13391-017-7155-9/METRICS

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This paper was financially supported by the AGH University of Science and Technology, project no 16.16.230.434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Lewińska.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewińska, G. Ternary Organic Solar Cells—Simulation–Optimization Approach. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-023-00479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-023-00479-4

Keywords

Navigation