Skip to main content
Log in

Charge mobility measurement techniques in organic semiconductors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Organic electronics is currently experiencing a surge of activities worldwide prompted in part by recent advances in achieving high electronic mobility, light emission over a broad range of frequencies, demonstration of spin valve operation with giant magneto-resistance and other effects. Despite these encouraging promises, there are many roadblocks that hinder a broader proliferation of “plastic electronics” in contemporary technology. Such devices involve charge transport as a main process in their operation processes, and therefore, require high-performance charge-transporting materials. The charge-carrier mobility is the major determining factor for the speed of electronic devices. Arguably, the most significant of them is the challenge to achieve a comprehensive understanding of the fundamentals of charge injection and charge transport in organics. In spite of its simple definition, because of the difficulty of measuring velocity, accurate determination of the mobility of the carriers is not easy and indirect ways are used, each with its own advantages and disadvantages. The article discusses important mobility measurement techniques employed for organic optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z., Yu J., Jones S.C., Barlow S., Yoo S., Domercq B., Prins P., Siebbeles L.D.A., Kippelen B., Marder S.R.: High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005)

    Article  Google Scholar 

  • Andersson, L.M.: Electronic Transport in Polymeric Solar Cells and Transistors Ph.D. Theses, Linkoping University, Sweden (2007)

  • Bassler H.: Charge transport in disordered organic photoconductors a monte carlo simulation study. Phys. Stat. Sol. B 175, 15 (1993)

    Article  Google Scholar 

  • Basu D., Wang L., Dunn L., Yoo B., Nadkarni S., Dodabalapur A., Heeney M., McCulloch I.: Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. Appl. Phys. Lett. 89(24), 242104 (2006)

    Article  ADS  Google Scholar 

  • Berner D., Houili H., Leo W., Zuppiroli L.: Insights into OLED functioning through coordinated experimental measurements and numerical model simulations. Phys. Stat. Sol. A 202, 9 (2005)

    Article  ADS  Google Scholar 

  • Blom P.W.M., de Jong M.J.M., Vleggaar J.J.M.: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68(23), 3308 (1996)

    Article  ADS  Google Scholar 

  • Borsenberger P.M., Pautmeier L.T., Bässler H.: Nondispersive-to-dispersive charge-transport transition in disordered molecular solids. Phys. Rev. B 46(19), 12145–12153 (1992)

    Article  ADS  Google Scholar 

  • Bredas J.L., Street G.B.: Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309 (1985)

    Article  Google Scholar 

  • Cabanillas-Gonzalez J., Virgili T., Gambetta A., Lanzani G., Anthopoulos T.D., de Leeuw D.M.: Photoinduced transient stark spectroscopy in organic semiconductors: a method for charge mobility determination in the picosecond regime. Phys. Rev. Lett. 96(10), 106601–106605 (2006)

    Article  ADS  Google Scholar 

  • Campbell A.J., Bradley D.D.C., Antoniadis H: Trap-free, space-charge-limited currents in a polyfluorene copolymer using pretreated indium tin oxide as a hole injecting contact. Synth. Met. 122(1), 161–163 (2001)

    Article  Google Scholar 

  • Coropceanu V., Bredas J.L.: Organic transistors: a polarized response. Nat. Mater. 5, 929 (2006)

    Article  ADS  Google Scholar 

  • Dennler G., Mozer A.J., Juška G., Pivrikas A., Fuchsbauer R., Fuchsbauer A., Sariciftci N.S.: Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells. Org. Electron. 7, 229–234 (2006)

    Article  Google Scholar 

  • Dimitrakopoulos C.D, Purushothaman S., Kymissis J., Callegari A., Shaw J.M.: Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822 (1999)

    Article  ADS  Google Scholar 

  • Dodabalapur A., Torsi L., Katz H.E.: Organic transistors: two-dimensional transport and improved electrical characteristics. Science 268, 270 (1995)

    Article  ADS  Google Scholar 

  • Ehinger, K., Roth, S.: Electronic properties of polymers and related compounds (solid state sciences series 63). In: Kuzmany, H., Mehring, M., Roth, S. (eds.) Springer, Berlin (1985)

  • Fichou D.: Handbook of Oligo-and Polythiophenes. Wiley-VCH, Weinheim, New York (1999)

    Google Scholar 

  • Giebeler C., Antoniadis H., Bradley D.D.C., Shirota Y.: Space-charge-limited charge injection from indium tin oxide into a starburst amine and its implications for organic light-emitting diodes. Appl. Phys. Lett. 72(19), 2448 (1998)

    Article  ADS  Google Scholar 

  • Goldmann C., Haas S., Krellner C., Pernstich K.P., Gundlach D.J., Batlogg B.: Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique. J. Appl. Phys. 96(04), 2080 (2004)

    Article  ADS  Google Scholar 

  • Hamaguchi C.: Basic Semiconductor Physics, pp. 263. Springer, New Delhi (2001)

    MATH  Google Scholar 

  • Heeger A.J., Kivelson S., Schrieffer J.R., Su W.P.: Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988)

    Article  ADS  Google Scholar 

  • Hoofman R.J.O.M., de Haas M.P., Siebbeles L.D.A., Warman J.M.: Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392, 54 (1998)

    Article  ADS  Google Scholar 

  • Horowitz G.: Organic field-effect transistors. Adv. Mater. 10(5), 365–422 (1998)

    Article  Google Scholar 

  • Horowitz G., Hajlaoui M.E., Hajlaoui R.: Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000)

    Article  ADS  Google Scholar 

  • Horowitz G.: Organic thin film transistors: from theory to real devices. J. Mater. Res. 19, 1946 (2004)

    Article  ADS  Google Scholar 

  • Hosokawa C., Tokailin H., Higashi H., Kusumoto T.: Transient behavior of organic thin film electroluminescence. Appl. Phys. Lett. 60(10), 1220 (1992)

    Article  ADS  Google Scholar 

  • Hosokawa C., Tokailin H., Higashi H., Kusumoto T.: Transient electroluminescence from hole transporting emitting layer in nanosecond region. Appl. Phys. Lett. 63(10), 1322 (1993)

    Article  ADS  Google Scholar 

  • Houili H., Picon J.D., Zuppiroli L., Bussac M.N.: Polarization effects in the channel of an organic field-effect transistor. J. Appl. Phys. 100, 023702 (2006)

    Article  ADS  Google Scholar 

  • Hoyniak D., Nowak E., Anderson R.L.: Channel electron mobility dependence on lateral electric field in field-effect transistors. J. Appl. Phys. 87, 876 (2000)

    Article  ADS  Google Scholar 

  • Hulea I.N., Fratini S., Xie H., Mulder C.L., Iossad N.N., Rastelli G., Ciuchi S., Morpurgo A.F.: Tunable Fröhlich polarons in organic single-crystal transistors. Nat. Mater. 5, 982 (2006)

    Article  ADS  Google Scholar 

  • Hung L.S., Chen C.H.: Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R 39, 143–222 (2002)

    Article  Google Scholar 

  • Juska G., Arlauskas K., Viliunas M., Kocka J.: Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys. Rev. Lett. 84(21), 4946–4949 (2000)

    Article  ADS  Google Scholar 

  • Juška G., Genevičius K, Sliaužys G., Nekrašas N., R., Österbacka R.: Double injection in organic bulk-heterojunction. J. Non-Cryst. Solids 354(19–25), 2858–28611 (2008)

    ADS  Google Scholar 

  • Jaiswal M., Menon R.: Polymer electronic materials: a review of charge transport. Polym. Int. 55(12), 1371–1384 (2006)

    Article  Google Scholar 

  • Kashima K., Sato H., Musha K., Kano K.-I., Takahashi T.: Carrier mobility for organic semiconductors: reduction of noise of the short part drift time in the time of flight mobility method. Anal. Sci. 23(10), 1249 (2007)

    Article  Google Scholar 

  • Kimura, M., Inoue, S., Shimada, K., Tokito, S., Noda, K., Taga, Y., Sawaki, Y.: Spirocycle-incorporated triphenylamine derivatives as an advanced organic electroluminescent material. Chem. Lett. 192, (2000)

  • Kirova N., Bussac M.N.: Self-trapping of electrons at the field-effect junction of a molecular crystal. Phys. Rev. B 68, 235312 (2003)

    Article  ADS  Google Scholar 

  • Kitamura M., Imada T., Kako S., Arakawa Y.: Time-of-flight measurement of lateral carrier mobility in organic thin films. Jpn. J. Appl. Phys. 43, 2326 (2004)

    Article  ADS  Google Scholar 

  • Lampert M.A., Mark P.: Current Injection in Solids. Academic Press, New York (1970)

    Google Scholar 

  • Li L., Meller G., Kosina H.: Carrier concentration dependence of the mobility in organic semiconductors. Synth. Met. 157, 243–246 (2007)

    Article  Google Scholar 

  • Look D.C.: Schottky-barrier profiling techniques in semiconductors: gate current and parasitic resistance effects. J. Appl. Phys. 57, 377 (1984)

    Article  ADS  Google Scholar 

  • Mandoc M.M., de Boer B., Paasch G., Blom P.W.M.: Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75(19), 193202 (2007)

    Article  ADS  Google Scholar 

  • Mizutani T.: Behavior of charge carriers in organic insulating materials. IEEE Conference on Electrical Insulation and Dielectric Phenomena 15, 1–10 (2006)

    Article  Google Scholar 

  • Mort, J., Pai, D.M. (eds): Photoconductivity and Related Phenomena. Elsevier, New York (1976)

    Google Scholar 

  • Moses D.: Charge quantum yield and transient transport properties of anthracene and amorphous selenium. Solid State Commun. 69, 721 (1989)

    Article  ADS  Google Scholar 

  • Moses D.: Mechanism of carrier photo generation in amorphous selenium: fast transient photoconductivity. Phys. Rev. B 53, 4462 (1996)

    Article  ADS  Google Scholar 

  • Mozer A.J., Sariciftci N.S., Pivrikas A., Osterbacka R., Juška G., Brassat L., Bassler, H.: Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: a comparative study. Phys. Rev. B 71, 035214 (2005a)

    Article  ADS  Google Scholar 

  • Mozer A.J., Sariciftci N.S., Lutsen L., Vanderzande D., Osterbacka R., Westerling M., Juska G.: Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Appl. Phys. Lett. 86(11), 112104 (2005b)

    Article  ADS  Google Scholar 

  • Mozer A.Z., Dennler G., Sariciftci N.S., Westerling M., Pivrikas A., Österbacka R., Juška G.: Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 035217 (2005c)

    Article  ADS  Google Scholar 

  • Okumoto K., Wayaku K., Noda T., Kageyama H., Shirota Y.: Amorphous molecular materials: charge transport in the glassy state of N, N′-di(biphenylyl)-N, N′-diphenyl-[1,1′-biphenyl] −4,4′-diamines. Synth. Met. 111–112, 473–476 (2000)

    Article  Google Scholar 

  • Pasveer W.F., Cottaar J., Tanase C., Coehoorn R., Bobbert P.A., Blom P.W.M., de Leeuw D.M., Michels M.A.J.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005)

    Article  ADS  Google Scholar 

  • Pesavento P.V., Chesterfield R.J., Newman C.R., Frisbie C.D.: Gated four-probe measurements on pentacene thin-film transistors: contact resistance as a function of gate voltage and temperature. J. Appl. Phys. 96(12), 7312 (2004)

    Article  ADS  Google Scholar 

  • Pivrikas, A., Juska, G., Arlauskas, K., Scharber, M., Mozer, A., Sariciftci, N.S., Stubb, H., Österbacka, R.: Charge carrier transport and recombination in bulk-heterojunction solar cells Organic Photovoltaics VI. In: Kafafi, Z.H., Lane, P.A. (eds.) Proceedings of SPIE 5938, 59380N (2005)

  • Podzorov V., Sysoev S.E., Loginova E., Pudalov V.M., Gershenson M.E.: Single-crystal organic field effect transistors with the hole mobility ~8 cm 2/V s. Appl. Phys. Lett. 83(17), 3504 (2003)

    Article  ADS  Google Scholar 

  • Poplavskyy D., Nelson J.: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93, 341 (2003)

    Article  ADS  Google Scholar 

  • Prins P., Candeias L.P., van Breemen A.J.M., Sweelssen J., Herwig P.T., Schoo H.F.M., Siebbeles L.D.A.: Electron and hole dynamics on isolated chains of a solution-processable poly(thienylenevinylene) derivative in dilute solution. Adv. Mater. 17, 718 (2005)

    Article  Google Scholar 

  • Prins P., Grozema F.C., Schins J.M., Savenije T.J., Patil S., Scherf U., Siebbeles U.: Effect of intermolecular disorder on the intrachain charge transport in ladder-type poly(p-phenylenes). Phys. Rev. B 73, 045204 (2006)

    Article  ADS  Google Scholar 

  • Pucel R.A., Krumm C.F.: Simple method of measuring drift mobility profiles in thin semiconductor films. Electron. Lett. 12, 240–242 (1976)

    Article  Google Scholar 

  • Redecker M., Bässler H., Hörhold H.H.: Determination of the hole mobility in organic light-emitting diodes via transient absorption. J. Phys. Chem. B 101, 7398 (1997)

    Article  Google Scholar 

  • Roichman Y., Tessler N.: Synth. Met. 135, 443 (2003)

    Article  Google Scholar 

  • Roldan J.B., Gamiz F., Lopez-Villanueva J.A.: IEEE Trans. Electron Devices 44, 1447 (1997)

    Article  ADS  Google Scholar 

  • Saragi T.P.I., Fuhrmann-Lieker T., Salbeck J.: Comparison of charge-carrier transport in thin films of spiro-linked compounds and their corresponding parent compounds. Adv. Funct. Mater. 16(7), 966–974 (2006)

    Article  Google Scholar 

  • Scher H., Montroll E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  • Schouten P.G., Warman J.M., de Haas M.P.: Effect of accumulated radiation dose on pulse radiolysis conductivity transients in a mesomorphic octa-n-alkoxy-substituted phthalocyanine. J. Phys. Chem. 97, 9863 (1993)

    Article  Google Scholar 

  • Shirota Y., Okumoto K., Ohishi H., Tanaka M., Nakao M., Wayaku K., Nomura S., Kageyama H.: Charge transport in amorphous molecular materials. Proceedings of SPIE-International Society Optical Engineering 5937, 593717 (2005)

    Google Scholar 

  • Sirringhaus H., Brown P.J., Friend R.H., Nielsen M.M., Bechgaard K., Langeveld-Voss B.M.W., Spiering A.J.H., Janssen R.A.J., Meijer E.W.: Microstructure-mobility correlation in self-organized, conjugated polymer field-effect transistors. Synth. Met. 111–112, 129 (2000)

    Article  Google Scholar 

  • Stallinga P., Benvenho A.R.V., Smits E.C.P., Mathijssen S.G.J., Cölle M., Gomes H.L., de Leeuw D.M.: Determining carrier mobility with a metal–insulator–semiconductor structure. Org. Electron. 9, 735–739 (2008)

    Article  Google Scholar 

  • Stassen A.F., de Boer R.W.I., Iosad N.N., Morpurgo A.F.: Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl. Phys. Lett. 85(17), 3899 (2004)

    Article  ADS  Google Scholar 

  • Su W.P., Schrieffer J.R., Heeger A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    Article  ADS  Google Scholar 

  • Sze S.M.: Physics of Semiconductor Devices. 2nd edn. Wiley, New York (1981)

    Google Scholar 

  • Tanase C., Meijer E.J., Blom P.W.M., de Leeuw D.M.: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)

    Article  ADS  Google Scholar 

  • Tse S.C., Fong S.C., So S.K.: Electron transit time and reliable mobility measurements from thick film hydroxyquinoline-based organic light-emitting diode. J. Appl. Phys. 94, 2033 (2003)

    Article  ADS  Google Scholar 

  • Tse S.C., Tsang S.W., So S.K.: Polymeric conducting anode for small organic transporting molecules in dark injection experiments. J. Appl. Phys. 100, 063708 (2006)

    Article  ADS  Google Scholar 

  • van de Craats A.M., Warman J.M.: The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13(2), 130–133 (2001)

    Article  Google Scholar 

  • Veres J., Ogier S.D., Leeming S.W., Cupertino D.C., Khaffaf S.M.: Low-k insulators as the choice of dielec- trics in organic field-effect transistors. Adv. Funct. Mater. 13, 199 (2003)

    Article  Google Scholar 

  • Warman, J.M., de Haas, M.P., Dicker, G., Grozema, F.C., Piris, J., Debije, M.G.: Charge mobilities in organic semiconductingmaterials determined by pulse-radiolysis time-resolved microwave conductivity: π-bond-conjugated polymers versus ππ-stacked discotics. Chem. Mater. 16, 4600 (2004)

    Article  Google Scholar 

  • Wong T.C., Kovac J., Lee C.S., Hung L.S., Lee S.T.: Transient electroluminescence measurements on electron-mobility of N-arylbenzimidazoles. Chem. Phys. Lett. 334, 61 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Greenham, N.C. Charge mobility measurement techniques in organic semiconductors. Opt Quant Electron 41, 69–89 (2009). https://doi.org/10.1007/s11082-009-9323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-009-9323-0

Keywords

Navigation