Skip to main content
Log in

Improvement of Microwave Dielectric Properties of MgTiO3 Ceramics by Ti-Site Complex Substitution

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Microwave dielectric properties of MgTi1-x(Mn1/3Nb2/3)xO3 (0 ≤ x ≤ 0.05) ceramics were investigated based on their crystal structure characteristics. For the specimens sintered at 1400 °C for 4 h, complete solid solutions with a single phase and an ilmenite structure were obtained for the entire range of compositions. The quality factor (Qf) was dependent on the average Ti-site covalency related to the electronegativity difference and the reduction state of Ti4+. MgTi0.995(Mn1/3Nb2/3)0.005O3 exhibited the highest Qf value of 212,000 GHz owing to the high average covalency obtained from the Rietveld refinement of X-ray Diffraction patterns, high binding energy, and small full width at half maximum of Ti 2p peaks, as confirmed by X-ray Photoelectron Spectroscopy of MgTiO3 –based ceramics. The temperature coefficients of the resonant frequency (TCF) of MgTiO3-based ceramics were dependent on the degree of average oxygen octahedral distortion of the ilmenite structure. The dielectric constant (K) was affected by the theoretical dielectric polarizability of the constituent ions of sintered specimens. Excellent microwave dielectric properties were obtained for MgTi0.995(Mn1/3Nb2/3)0.005O3; K = 18.05, Qf = 212,000 GHz, TCF =  − 37.04 ppm/°C. The microwave dielectric properties were improved by substituting (Mn1/3Nb2/3)4+ for Ti4+ in MgTiO3-based ceramics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zhang, J., Yue, Z., Luo, Y., Li, L.: MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceram. Int. 44, 21000–21003 (2018)

    Article  CAS  Google Scholar 

  2. Wakino, K.: Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69–86 (1989)

    Article  CAS  Google Scholar 

  3. Jantunen, H., Rautioaho, R., Ki, A.U., Leppavuori, S.: Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc. 20, 2331–2336 (2000)

    Article  CAS  Google Scholar 

  4. Kim, E.S., Jeon, C.J.: Microwave dielectric properties of ATiO3 (A= Ni, Mg Co, Mn) ceramics. J. Eur. Ceram. Soc. 30, 341–346 (2010)

    Article  Google Scholar 

  5. Zhang, Q.L., Yang, H., Tong, J.X.: Low temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Mater. Letts. 60, 1188–1191 (2006)

    Article  CAS  Google Scholar 

  6. Belnou, F., Bernard, J., Houivet, D., Haussonne, J.M.: Low temperature sintering of MgTiO3 with bismuth oxide based additions. J. Eur. Ceram. Soc. 25, 2785–2789 (2005)

    Article  CAS  Google Scholar 

  7. Santhosh Kumar, J., Kumar, A., James, A.R., Pamu, D.: Enhanced microwave dielectric properties of MgTiO3 ceramics prepared by mechanochemical method. J. Aus. Ceram. Soc. 42, 44–48 (2011)

    Google Scholar 

  8. Bernard, J., Belnou, F., Houivet, D., Haussonne, J.M.: Synthesis of pure MgTiO3 by optimizing mixing/grinding condition by MgO-TiO2 powders. J. Mater. Process. Techno. 199, 150–155 (2008)

    Article  CAS  Google Scholar 

  9. Abothu, I.R., Prasada Rao, A.V., Komarneni, S.: Nanocomposite and monophasic synthesis routes to magnesium titanate. Mater. Lett. 38, 186–189 (1999)

    Article  CAS  Google Scholar 

  10. Surendran, K.P., Wu, A., Vilarinho, P.M., Ferreira, V.M.: Ni and Zn doped MgTiO3 thin films: structure, microstructure, and dielectric characteristics. J. Appl. Phys. 107, 11482–11490 (2010)

    Article  Google Scholar 

  11. Kumar, T.S., Gogoi, P., Perumal, A., Sharma, P., Pamu, D.: Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J. Am. Ceram. Soc. 97, 1054–1099 (2014)

    Article  Google Scholar 

  12. Suresh, J., Thomas, K., Sreemoohanadhan, H., George, C.N., John, A., Solomon, S., Wariar, P.R.S., Koshy, J.: Synthesis of nanocrystalline magnesium titanate by an auto-igniting combustion technique and its structural, spectroscopic and dielectric properties. Mater. Res. Bull. 45, 761–765 (2010)

    Article  CAS  Google Scholar 

  13. Zhang, M., Li, L., Xia, W., Liao, Q.: Structure and properties analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M= Ni, Zn, Co and Mn) microwave dielectric materials. J. Alloys. Compd. 537, 76–79 (2012)

    Article  CAS  Google Scholar 

  14. Gogoi, P., Singh, L.R., Pamu, D.: Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications. J. Mater. Sci. Mater. Electron. 28, 11712–11721 (2017)

    Article  CAS  Google Scholar 

  15. Gong, Z., Wang, Z., Wang, L., Fu, Z., Han, W., Zhang, Q.: Microwave dielectric properties of high-Q Mg(SnxTi1-x)O3 ceramics. Electron. Mater. Lett. 9, 331–335 (2013)

    Article  CAS  Google Scholar 

  16. Manan, A., Ullah, Z., Ahmad, A.S., Ullah, A., Khan, D.F., Hussain, A., Khan, M.U.: Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3-xCa0.6La0.8/3TiO3 ceramics. J. Adv. Ceram. 7, 72–78 (2018)

    Article  CAS  Google Scholar 

  17. Jia, X., Xu, Y., Zhao, P., Li, J., Li, W.: Structural dependence of microwave dielectric properties in ilmenite-type Mg(Ti1-xNbx)O3 solid solutions by Rietveld refinement and Raman spectra. Ceram. Int. 47, 4820–4830 (2021)

    Article  CAS  Google Scholar 

  18. Jo, H.J., Kim, E.S.: Enhanced quality factor of MgTiO3 ceramics by isovalent Ti-site substitution. Ceram. Int. 42, 5479–5486 (2016)

    Article  CAS  Google Scholar 

  19. Li, B., Lai, Y., Zeng, Y., Yang, F., Huang, F., Yang, X., Wang, F., Wu, C., Zhong, X., Su, H.: Structure and microwave dielectric properties of (Zn1/3Nb2/3)4+ co-substituted MgTiO3 ceramic. Mater. Sci. Eng. B 276, 115572 (2022)

    Article  CAS  Google Scholar 

  20. Sohn, J.H., Inaguma, Y., Yoon, S.O., Itoh, M., Nakamura, T., Yoon, S.J., Kim, H.J.: Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 33, 5466–5470 (1994)

    Article  CAS  Google Scholar 

  21. Templeton, A., Wang, X., Penn, S.J., Webb, S.J., Cohen, L.F., Alford, N.M.: Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83, 95–100 (2000)

    Article  CAS  Google Scholar 

  22. Kuang, X.J., Xia, H.T., Liao, F.H., Wang, C.H., Li, L., Jing, X.P.: Doping effects of Ta on conductivity and microwave dielectric loss of MgTiO3 Ceramics. J. Am. Ceram. Soc. 90, 3142–3147 (2007)

    Article  CAS  Google Scholar 

  23. Wu, S., Wang, S., Chen, L., Wang, X.: Effect of Mn substitutions on dielectric properties of high dielectric constant BaTiO3-based ceramic. J. Mater. Sci. Mater Electron. 19, 505–508 (2008)

    Article  CAS  Google Scholar 

  24. Roisnel, T., Carvajal, J.R.: WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater. Sci. Forum. 378–381, 118 (2001)

    Article  Google Scholar 

  25. Atuchin, V.V., Kesler, V.G., Pervukhina, N.V., Zhang, Z.: Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron. Spectrosc. Relat. Phenom. 152, 18–24 (2006)

    Article  CAS  Google Scholar 

  26. Hakki, B.W., Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  27. Nishikawa, T., Wakino, K., Tamura, H., Tanaka, H., Ishikawa, Y.: Precise measurement method for temperature coefficient of microwave dielectric resonator material. Microw. Symp. Dig. 87, 277 (1987)

    Article  Google Scholar 

  28. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  29. Wechsler, B.A., Von Dreele, R.B.: Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta. Crystallogr. B 45, 542–549 (1989)

    Article  Google Scholar 

  30. Iddle, D.M., Bell, A.J., Moulson, A.J.: Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2. J. Mater. Sci. 27, 6303–6310 (1992)

    Article  Google Scholar 

  31. Brown, I.D., Shannon, R.D.: Empirical bond-strength-bond-length curves for oxides. Acta. Crystallogr. A 29, 266–282 (1973)

    Article  CAS  Google Scholar 

  32. Gange, O.C., Hawthorne, F.C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta. Crystallogr. B 71, 562–578 (2015)

    Article  Google Scholar 

  33. Kan, A., Ogawa, H., Ohsato, H.: Synthesis and crystal structure-microwave dielectric property relations in Sn-Substituted Ca3(Zr1-xSnx)Si2O9 Solid Solutions with Cuspidine Structure. Jpn. J. Appl. Phys. 46, 7108–7111 (2007)

    Article  CAS  Google Scholar 

  34. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Ceram. Soc. 54, 3570–3582 (1932)

    CAS  Google Scholar 

  35. Brown, I.D., Wu, K.K.: Empirical parameters for calculating cation-oxygen bond valences. Acta. Crystallogr. B 32(7), 1957–1959 (1976)

    Article  Google Scholar 

  36. Mastelaro, V.R., Lisboa-Filho, P.N., Neves, P.P., Schreiner, W.H., Nascente, P.A.P., Eiras, J.A.: X-ray photoelectron spectroscopy study on sintered Pb1-xLaxTiO3 ferroelectric ceramics. J. Electron Spectrosc. Relat. Phenom. 156–158, 476–481 (2007)

    Article  Google Scholar 

  37. Bosman, A.J., Havinga, E.E.: Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593–1600 (1963)

    Article  CAS  Google Scholar 

  38. Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kyonggi University Research Grant (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung Soo Kim.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J.S., Kim, E.S. Improvement of Microwave Dielectric Properties of MgTiO3 Ceramics by Ti-Site Complex Substitution. Electron. Mater. Lett. 20, 56–64 (2024). https://doi.org/10.1007/s13391-023-00456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00456-x

Keywords

Navigation