Skip to main content
Log in

Relationships between Sn substitution for Ti and microwave dielectric properties of Mg2(Ti1−xSnx)O4 ceramics system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg2(Ti1−xSnx)O4 (x = 0–1) ceramics were synthesized by the conventional solid-state reaction route. The effect of Sn substitution on the structure, microstructure and microwave dielectric properties of Mg2(Ti1−xSnx)O4 has been investigated. Formation of the solid solution was confirmed by the X-ray diffraction and the measured lattice parameters, which varied linearly from Mg2TiO4 (a = b = c = 8.4402 Å) to Mg2SnO4 (a = b = c = 8.6372 Å). Theoretical density, observed ionic polarizabilities and packing fraction were analyzed. A fine microwave dielectric properties (εr = 12.18, Q × f = 170,130 GHz, τf = −51.7 °C) was achieved for Mg2(Ti0.8Sn0.2)O4 ceramics sintered at 1,510 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Technology Publications, Oxford, 2008)

    Google Scholar 

  2. F. Liang, S. Feng, W. Lu, Q. Wan, G. Fan, J. Alloy. Compd. 613, 128–131 (2014)

    Article  Google Scholar 

  3. C. Zhang, R. Zuo, Q. Sun, Z. Hu, J. Zhang, Ceram. Int. 39, 5675–5679 (2013)

    Article  Google Scholar 

  4. Y.-C. Chen, Y.-N. Wang, C.-H. Hsu, J. Alloy. Compd. 509, 9650–9653 (2011)

    Article  Google Scholar 

  5. Y.-B. Chen, J. Alloy. Compd. 513, 481–486 (2012)

    Article  Google Scholar 

  6. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 89, 3441–3445 (2006)

    Article  Google Scholar 

  7. C.-F. Yang, W.-C. Tzou, H.-H. Chung, C.-C. Diao, C.-J. Huang, J. Alloy. Compd. 477, 673–676 (2009)

    Article  Google Scholar 

  8. X. Liu, F. Gao, C. Tian, Mater. Res. Bull. 43, 693–699 (2008)

    Article  Google Scholar 

  9. Q. Liao, L. Li, P. Zhang, L. Cao, Y. Han, Mater. Sci. Eng., B 176, 41–44 (2011)

    Article  Google Scholar 

  10. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  11. G. Pfaff, Thermochim. Acta 237, 83–90 (1994)

    Article  Google Scholar 

  12. E. Leite, J. Cerri, E. Longo, J. Varela, C. Paskocima, J. Eur. Ceram. Soc. 21, 669–675 (2001)

    Article  Google Scholar 

  13. Y.-C. Chen, Y.-N. Wang, C.-H. Hsu, Mater. Chem. Phys. 133, 829–833 (2012)

    Article  Google Scholar 

  14. W. Sp, L. Jh, J. Alloy. Compd. 509, 8126–8129 (2011)

    Article  Google Scholar 

  15. H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, J. Eur. Ceram. Soc. 23, 2485–2488 (2003)

    Article  Google Scholar 

  16. L. Wang, Q. Sun, W. Ma, Z. Huan, Ceram. Int. 39, 5185–5190 (2013)

    Article  Google Scholar 

  17. S. Kucheiko, J.W. Choi, H.J. Kim, H.J. Jung, J. Am. Ceram. Soc. 79, 2739–2743 (1996)

    Article  Google Scholar 

  18. C.-L. Huang, J.L. Hou, C.-L. Pan, C.-Y. Huang, C.-W. Peng, C.-H. Wei, Y.-H. Huang, J. Alloy. Compd. 450, 359–363 (2008)

    Article  Google Scholar 

  19. D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75, 2573–2575 (1992)

    Article  Google Scholar 

  20. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731–1736 (2010)

    Article  Google Scholar 

  21. W. Guoqing, W. Shunhua, S. Hao, Mater. Lett. 59, 2229–2231 (2005)

    Article  Google Scholar 

  22. A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, J. Am. Ceram. Soc. 83, 95–100 (2000)

    Article  Google Scholar 

  23. A. Bosman, E. Havinga, Phys. Rev. 129, 1593–1600 (1963)

    Article  Google Scholar 

  24. H.-J. Lee, K.-S. Hong, S.-J. Kim, I.-T. Kim, Mater. Res. Bull. 32, 847–855 (1997)

    Article  Google Scholar 

  25. S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Funds of China (Grant No. 51402039). Supported by the Open Foundation of National Engineering Research Center of Electromagnetic Radiation Control Materials (ZYGX2013K001-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Li or Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tang, B., Li, Y. et al. Relationships between Sn substitution for Ti and microwave dielectric properties of Mg2(Ti1−xSnx)O4 ceramics system. J Mater Sci: Mater Electron 26, 571–577 (2015). https://doi.org/10.1007/s10854-014-2436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2436-7

Keywords

Navigation