Skip to main content
Log in

Analysis of Physical and Electrical Properties of NiTe2 Single Crystal Grown via Molten Salt Flux Method

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Since the emergence of layered two-dimensional materials, the development of methods for their large-scale synthesis has become crucial for integrating these materials into existing fabrication processes. In this study, we report the synthesis of a NiTe2 single crystal on the near-centimeter scale using the molten salt flux method (MSFM). The single-crystal nature of the synthesized NiTe2 sample was confirmed using X-ray diffraction analysis, while its chemical characteristics were analyzed using X-ray photoelectron spectroscopy, which confirmed Ni–Te chemical binding. The layered structure of the ingot was confirmed using Raman spectroscopy; two prominent signals were observed, at 84 and 138 cm−1, which were consistent with the in-plane vibrational mode, Eg, and out-of-plane vibrational mode, A1g. In addition, analyses performed on different flakes confirmed the structural uniformity of the single crystal, as only a small variation in the peak-to-peak position of the full width at half maximum was observed. Using Kelvin probe force microscopy, the electronic structure of the NiTe2 multilayered surface was investigated to determine its surface work function, which was found to be 4.4–4.8 eV. A back-gate field-effect transistor was fabricated using the single-crystal NiTe2 to evaluate its semimetallic characteristics; the transfer characteristic of the NiTe2 FET, determined by applying a back-gate bias, showed weak gate voltage dependence and linear I–V characteristics, in keeping with the linear ID-VD output characteristics. Therefore, the synthesis of NiTe2 via the MSFM should facilitate the integration of layered materials with existing fabrication processes for the mass production of electronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herbig, C., Zhang, C., Mujid, F., Xie, S., Pedramrazi, Z., Park, J., Crommie, M.F.: Local electronic properties of coherent single-layer WS2/WSe2 lateral heterostructures. Nano Lett. 21, 2363–2369 (2021)

    Article  CAS  Google Scholar 

  2. Oshima, S., Toyoda, M., Saito, S.: Geometrical and electronic properties of unstrained and strained transition metal dichalcogenide nanotubes. Phys. Rev. Mater. 4, 026004 (2020)

    Article  CAS  Google Scholar 

  3. Bilc, D.I., Benea, D., Pop, V., Ghosez, P., Verstraete, M.J.: Electronic and thermoelectric properties of transition-metal dichalcogenides. J. Phys. Chem. C 125, 27084–27097 (2021)

    Article  CAS  Google Scholar 

  4. Das, P., Di Sante, D., Cilento, F., Bigi, C., Kopic, D., Soranzio, D., Sterzi, A., Krieger, J., Vobornik, I., Fujii, J.: Electronic properties of candidate type-II Weyl semimetal WTe2. A review perspective. Electron. Struct. 1, 014003 (2019)

    Article  CAS  Google Scholar 

  5. Das, S., Sebastian, A., Pop, E., McClellan, C.J., Franklin, A.D., Grasser, T., Knobloch, T., Illarionov, Y., Penumatcha, A.V., Appenzeller, J.: Transistors based on two-dimensiona materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021)

    Article  CAS  Google Scholar 

  6. Dang, W., Zhao, B., Liu, C., Yang, X., Kong, L., Lu, Z., Li, B., Li, J., Zhang, H., Li, W.: Ultimate dielectric scaing of 2D transistors via van der Waals metal integration. Nano Res. 15, 1603–1608 (2022)

    Article  CAS  Google Scholar 

  7. Beck, M.E., Hersam, M.C.: Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 14, 6498–6518 (2020)

    Article  CAS  Google Scholar 

  8. Zhang, W., Netsu, S., Kanazawa, T., Amemiya, T., Miyamoto, Y.: Effect of increasing gate capacitance on the performance of a p-MoS2/HfS2 van der Waals heterostructure tunneling field-effect transistor. Jpn. J. Appl. Phys. 58, SBBH02 (2019)

    Article  CAS  Google Scholar 

  9. Nappini, S., Boukhvalov, D.W., D’Olimpio, G., Zhang, L., Ghosh, B., Kuo, C.N., Zhu, H., Cheng, J., Nardone, M., Ottaviano, L.: Transition-metal dichalcogenide NiTe2: an ambient-stable material for catalysis and nanoelectronics. Adv. Funct. Mater. 30, 2000915 (2020)

    Article  CAS  Google Scholar 

  10. Soluyanov, A.A., Gresch, D., Wang, Z., Wu, Q., Troyer, M., Dai, X., Bernevig, B.A.: Type-II Weyl semimetals. Nature 527, 495–498 (2015)

    Article  CAS  Google Scholar 

  11. Zhang, S., Xu, H., Liao, F., Sun, Y., Ba, K., Sun, Z., Qiu, Z.-J., Xu, Z., Zhu, H., Chen, L.: Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology 30, 174002 (2019)

    Article  CAS  Google Scholar 

  12. Xu, H., Wei, J., Zhou, H., Feng, J., Xu, T., Du, H., He, C., Huang, Y., Zhang, J., Liu, Y.: High spin hall conductivity in large-area type-II dirac semimetal PtTe2. Adv. Mater. 32, 2000513 (2020)

    Article  CAS  Google Scholar 

  13. Li, J., Hong, M., Sun, L., Zhang, W., Shu, H., Chang, H.: Enhanced electrocatalytic hydrogen evolution from large-scale, facile-prepared, highly crystalline WTe2 nanoribbons with Weyl semimetallic phase. ACS Appl. Mater. Interfaces 10, 458–467 (2018)

    Article  CAS  Google Scholar 

  14. Qi, M., An, C., Zhou, Y., Wu, H., Zhang, B., Chen, C., Yuan, Y., Wang, S., Zhou, Y., Chen, X.: Pressure-driven Lifshitz transition in type-II Dirac semimetal NiTe2. Phys. Rev. B 101, 115124 (2020)

    Article  CAS  Google Scholar 

  15. Xu, C., Li, B., Jiao, W., Zhou, W., Qian, B., Sankar, R., Zhigadlo, N.D., Qi, Y., Qian, D., Chou, F.-C.: Topological type-II Dirac Fermions approaching the Fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 30, 4823–4830 (2018)

    Article  CAS  Google Scholar 

  16. Feng, Z., Si, J., Li, T., Dong, H., Xu, C., Yang, J., Zhang, Z., Wang, K., Wu, H., Hou, Q.: Evidences for pressure-induced two-phase superconductivity and mixed structures of NiTe2 and NiTe in type-II Dirac semimetal NiTe2-x (x = 0.38±0.09) single crystal. Mater. Today Phys. 17, 100339 (2021)

    Article  CAS  Google Scholar 

  17. Liu, Q., Fei, F., Chen, B., Bo, X., Wei, B., Zhang, S., Zhang, M., Xie, F., Naveed, M., Wan, X.: Nontopological origin of the planar Hall effect in the type-II Dirac semimetal NiTe2. Phys. Rev. B 99, 155119 (2019)

    Article  CAS  Google Scholar 

  18. Mandal, M., Singh, R.: Emergent superconductivity by Re doping in type-II Weyl semimetal NiTe2. J. Phys. Condens. Matter 33, 135602 (2021)

    Article  CAS  Google Scholar 

  19. Zheng, F., Li, X.-B., Tan, P., Lin, Y., Xiong, L., Chen, X., Feng, J.: Emergent superconductivity in two-dimensional NiTe2 crystals. Phys. Rev. B 101, 100505 (2020)

    Article  CAS  Google Scholar 

  20. You, J.-Y., Gu, B., Su, G., Feng, Y.P.: Two-dimensional topological superconductivity candidate in a van der Waals layered material. Phys. Rev. B 103, 104503 (2021)

    Article  CAS  Google Scholar 

  21. Yan, F., Hu, C., Wang, Z., Lin, H., Wang, K.: Perspectives on photodetectors based on selenides and their van der Waals heterojunctions. Appl. Phys. Lett. 118, 190501 (2021)

    Article  CAS  Google Scholar 

  22. Bozheyev, F., Ellmer, K.: Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: a review. J. Mater. Chem. A 10, 9327–9347 (2022)

    Article  CAS  Google Scholar 

  23. Sikalidis, C.: Advances in Ceramics: Synthesis and Characterization, Processing and Specific Applications. BoD–Books on Demand (2011)

  24. May, A.F., Yan, J., McGuire, M.A.: A practical guide for crystal growth of van der Waals layered materials. J. Appl. Phys. 128, 051101 (2020)

    Article  CAS  Google Scholar 

  25. Cevallos, F.A., Guo, S., Heo, H., Scuri, G., Zhou, Y., Sung, J., Taniguchi, T., Watanabe, K., Kim, P., Park, H.: Liquid salt transport growth of single crystals of the layered dichalcogenides MoS2 and WS2. Cryst. Growth Des. 19, 5762–5767 (2019)

    Article  CAS  Google Scholar 

  26. Roy, B., Ahrenkiel, S.P., Fuierer, P.A.: Controlling the size and morphology of TiO2 powder by molten and solid salt synthesis. J. Am. Ceram. Soc. 91, 2455–2463 (2008)

    Article  CAS  Google Scholar 

  27. Yang, L., Liu, D., Li, J., Yi, Q., Yi, J., Huang, B., Miao, L., Wu, M., Zhao, C.: Broadband optical response of layered nickel ditelluride towards the mid-infrared regime. Opt. Mater. Express 10, 1335–1343 (2020)

    Article  Google Scholar 

  28. Monteiro, J.F.H.L., Marciniak, M.B., Jurelo, A.R., Siqueira, E.C., Dias, F.T., Júnior, J.L.P.: Synthesis and microstructure of NiTe2. J. Cryst. Growth 478, 129–133 (2017)

    Article  CAS  Google Scholar 

  29. Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., Philip, J.: J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 37. 042903 (2019)

  30. Park, J.H., Vishwanath, S., Wolf, S., Zhang, K., Kwak, I., Edmonds, M., Breeden, M., Liu, X., Dobrowolska, M., Furdyna, J.: Selective chemical response of transition metal dichalcogenides and metal dichalcogenides in ambient conditions. ACS Appl. Mater. Interfaces 9, 29255–29264 (2017)

    Article  CAS  Google Scholar 

  31. Park, J.H., Vishwanath, S., Liu, X., Zhou, H., Eichfeld, S.M., Fullerton-Shirey, S.K., Robinson, J.A., Feenstra, R.M., Furdyna, J., Jena, D.: Scanning tunneling microscopy and spectroscopy of air exposure effects on molecular beam epitaxy grown WSe2 monolayers and bilayers. ACS Nano 10, 4258–4267 (2016)

    Article  CAS  Google Scholar 

  32. Chia, X., Sofer, Z., Luxa, J., Pumera, M.: Unconventionally layered CoTe2 and NiTe2 as electrocatalysts for hydrogen evolution. Chem. A Eur. J. 23, 11719–11726 (2017)

    Article  CAS  Google Scholar 

  33. Zuo, P., Zhang, S., Jin, B., Tian, Y., Yang, J.: Rapid synthesis and electrochemical property of Ag2Te nanorods. J. Phys. Chem. C 112, 14825–14829 (2008)

    Article  CAS  Google Scholar 

  34. Xiao, F., Chen, G., Wang, Q., Wang, L., Pei, J., Zhou, N.: Simple synthesis of ultra-long Ag2Te nanowires through solvothermal co-reduction method. J. Solid State Chem. 183, 2382–2388 (2010)

    Article  CAS  Google Scholar 

  35. Wang, K., Ye, Z., Liu, C., Xi, D., Zhou, C., Shi, Z., Xia, H., Liu, G., Qiao, G.: Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8, 2910–2916 (2016)

    Article  CAS  Google Scholar 

  36. Dobson, K.D., Rotlevi, O., Rose, D., Hodes, G.: Formation and characterization of electroless-deposited NiTe2 back contacts to CdTe/CdS thin-film solar cells. J. Electrochem. Soc. 149, G147 (2002)

    Article  CAS  Google Scholar 

  37. Rizza, C., Dutta, D., Ghosh, B., Alessandro, F., Kuo, C.-N., Lue, C.S., Caputi, L.S., Bansil, A., Agarwal A., Politano, A.: Photonic topological transitions and epsilon-near-zero surface plasmons in type-II Dirac semimetal NiTe2. arXiv preprint arXiv:2110.02194 (2021)

  38. Wang, K., Wu, T., Wu, C., Sriramdas, R., Huang, X., Wang, K., Jiang, Y., Liu, H., Yan, Y., Yang, D.: Nature of terrace edge states (TES) in lower-dimensional halide perovskite. J. Mater. Chem. A 8, 7659–7670 (2020)

    Article  CAS  Google Scholar 

  39. Abdellatif, M., Keshavan, S., Dante, S., Salerno, M.: Induced inhomogeneity in graphene work function due to graphene-TiO2/Ag/glass substrate interaction. Thin Solid Films 628, 43–49 (2017)

    Article  CAS  Google Scholar 

  40. Lee, N., Yoo, J., Choi, Y., Kang, C., Jeon, D., Kim, D., Seo, S., Chung, H.: The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl. Phys. Lett. 95, 222107 (2009)

    Article  Google Scholar 

  41. Xiong, W., Huang, K., Yuan, S.: The mechanical, electronic and optical properties of two-dimensional transition metal chalcogenides MX2 and M2X3 (M = Ni, Pd; X = S, Se, Te) with hexagonal and orthorhombic structures. J. Mater. Chem. C 7, 13518–13525 (2019)

    Article  CAS  Google Scholar 

  42. Zhao, B., Dang, W., Liu, Y., Li, B., Li, J., Luo, J., Zhang, Z., Wu, R., Ma, H., Sun, G.: Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 140, 14217–14223 (2018)

    Article  CAS  Google Scholar 

  43. Ma, H., Chen, P., Li, B., Li, J., Ai, R., Zhang, Z., Sun, G., Yao, K., Lin, Z., Zhao, B.: Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018)

    Article  CAS  Google Scholar 

  44. Zhang, Z., Niu, J., Yang, P., Gong, Y., Ji, Q., Shi, J., Fang, Q., Jiang, S., Li, H., Zhou, X.: Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 29, 1702359 (2017)

    Article  Google Scholar 

  45. Shi, J., Huan, Y., Xiao, M., Hong, M., Zhao, X., Gao, Y., Cui, F., Yang, P., Pennycook, S.J., Zhao, J.: Two-dimensional metallic NiTe2 with ultrahigh environmental stability, conductivity, and electrocatalytic activity. ACS Nano 14, 9011–9020 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF) (Nos. 2020R1A4A4079397 and 2021R1C1C1012209), which is funded by the Korean government (MSIT). This work was also supported by a research grant from the Gyeongsang National University in 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Younki Lee, Jung Young Cho or Jun Hong Park.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Je, Y., Kim, E., Binh, N.V. et al. Analysis of Physical and Electrical Properties of NiTe2 Single Crystal Grown via Molten Salt Flux Method. Electron. Mater. Lett. 19, 452–461 (2023). https://doi.org/10.1007/s13391-023-00419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00419-2

Keywords

Navigation