Skip to main content
Log in

Bandgap opening in MoTe2 thin flakes induced by surface oxidation

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Recently, the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties. Here, we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport, scanning tunnelling microscope (STM) measurements and band structure calculations. For a bulk sample, it exhibits large magneto-resistance (MR) and Shubnikov–de Hass oscillations in ρxx and a series of Hall plateaus in ρxy at low temperatures. Meanwhile, the MoTe2 thin films were intensively investigated with thickness dependence. For samples, without encapsulation, an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness. In such thin films, we also observed a suppression of the MR and weak anti-localization (WAL) effects. We attributed these effects to disorders originated from the extrinsic surface chemical reaction, which is consistent with the density functional theory (DFT) calculations and in-situ STM results. In contrast to samples without encapsulated protection, we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride (h-BN) film protection. Our results indicate that the metallic or superconducting behavior is its intrinsic state, and the insulating behavior is likely caused by surface oxidation in few layer 1T’-MoTe2 flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18(73), 193 (1969)

    ADS  Google Scholar 

  2. R. C. Morris, R. V. Coleman, and R. Bhandari, Superconductivity and magnetoresistance in NbSe2, Phys. Rev. B 5(3), 895 (1972)

    ADS  Google Scholar 

  3. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)

    Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)

    ADS  Google Scholar 

  5. R. A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514, 86 (2015)

    ADS  Google Scholar 

  6. X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)

    ADS  Google Scholar 

  7. K. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    ADS  Google Scholar 

  8. J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys. 14(4), 43403 (2019)

    ADS  Google Scholar 

  9. T. Teshome and A. Datta, Topological insulator in two-dimensional SiGe induced by biaxial tensile strain, ACS Omega 3(1), 1 (2018)

    Google Scholar 

  10. Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electronic field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)

    ADS  Google Scholar 

  11. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Google Scholar 

  12. Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Süß, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Superconductivity in Weyl semimetal candidate MoTe2, Nat. Commun. 7(1), 11038 (2016)

    ADS  Google Scholar 

  13. Q. Zhou, D. Rhodes, Q. R. Zhang, S. Tang, R. Schönemann, and L. Balicas, Hall effect within the colossal magnetoresistive semimetallic state of MoTe2, Phys. Rev. B 94(12), 121101 (2016)

    ADS  Google Scholar 

  14. D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, Bandgap opening in fewlayered monoclinic MoTe2, Nat. Phys. 11(6), 482 (2015)

    Google Scholar 

  15. H. P. Hughes and R. H. Friend, Electrical resistivity anomaly in b-MoTe2 (metallic behavior), J. Phys. C Solid State Phys. 11(3), L103 (1978)

    ADS  Google Scholar 

  16. T. Zandt, H. Dwelk, C. Janowitz, and R. Manzke, Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2, J. Alloys Compd. 442L103(1–2), 216 (2007)

    Google Scholar 

  17. Y. Sun, S. C. Wu, M. N. Ali, C. Felser, and B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2, Phys. Rev. B 92(16), 161107 (2015)

    ADS  Google Scholar 

  18. R. Szczsniak, A. P. Durajski, and M. W. Jarosik, Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides, Front. Phys. 13(2), 137401 (2018)

    ADS  Google Scholar 

  19. J. Cui, P. Li, J. Zhou, W. Y. He, X. Huang, J. Yi, J. Fan, Z. Ji, X. Jing, F. Qu, Z. G. Cheng, C. Yang, L. Lu, K. Suenaga, J. Liu, K. T. Law, J. Lin, Z. Liu, and G. Liu, Transport evidence of asymmetric spin-orbit coupling in fewlayer superconducting 1Td-MoTe2, Nat. Commun. 10(1), 2044 (2019)

    ADS  Google Scholar 

  20. Y. Gan, C.W. Cho, A. Li, J. Lyu, X. Du, J. S. Wen, and L. Y. Zhang, Giant enhancement of superconductivity in few layers MoTe2, Chin. Phys. B 28(11), 117401 (2019)

    ADS  Google Scholar 

  21. L. Yang, H. Wu, W. Zhang, Z. Chen, J. Li, X. Lou, Z. Xie, R. Zhu, and H. Chang, Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T’-MoTe2 films, Nanoscale 10(42), 19906 (2018)

    Google Scholar 

  22. F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. L. Feng, Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions, Small 12(42), 5802 (2016)

    Google Scholar 

  23. B. Chen, H. Sahin, A. Suslu, L. Ding, M. I. Bertoni, F. M. Peeters, and S. Tongay, Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction, ACS Nano 9(5), 5326 (2015)

    Google Scholar 

  24. H. Zhu, Q. Wang, L. Cheng, R. Addou, J. Kim, M. J. Kim, and R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing, ACS Nano 11(11), 11005 (2017)

    Google Scholar 

  25. J. M. Woods, J. Shen, P. Kumaravadivel, Y. Pang, Y. Xie, G. A. Pan, M. Li, E. I. Altman, L. Lu, and J. J. Cha, Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation, ACS Appl. Mater. Interfaces 9(27), 23175 (2017)

    Google Scholar 

  26. D. Rhodes, R. Schönemann, N. Aryal, Q. Zhou, Q. R. Zhang, E. Kampert, Y.C. Chiu, Y. Lai, Y. Shimura, G. T. McCandless, J. Y. Chan, D. W. Paley, J. Lee, A. D. Finke, J. P. C. Ruff, S. Das, E. Manousakis, and L. Balicas, Bulk Fermi surface of the Weyl type-II semimetallic candidate g-MoTe2, Phys. Rev. B 96(16), 165134 (2017)

    Google Scholar 

  27. I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys. 13(2), 025008 (2011)

    ADS  Google Scholar 

  28. B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, F. Xiu, and F. Song, Weak antilocalization in Cd3As2 thin films, Sci. Rep. 6(1), 22377 (2016)

    ADS  Google Scholar 

  29. N. P. Breznay, H. Volker, A. Palevski, R. Mazzarello, A. Kapitulnik, and M. Wuttig, Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4, Phys. Rev. B 86(20), 205302 (2012)

    ADS  Google Scholar 

  30. Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko, P. C. Canfield, N. Trivedi, R. Arita, and A. Kaminski, Temperature-induced Lifshitz transition in WTe2, Phys. Rev. Lett. 115(16), 166602 (2015)

    ADS  Google Scholar 

  31. S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin–orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)

    ADS  Google Scholar 

  32. G. Bergmann, Weak localization in thin films: A timeofflight experiment with conduction electrons, Phys. Rep. 107(1), 1 (1984)

    ADS  MathSciNet  Google Scholar 

  33. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett. 105(17), 176602 (2010)

    ADS  Google Scholar 

  34. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett. 106(16), 166805 (2011)

    ADS  Google Scholar 

  35. J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, and Y. Cui, Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates, Nano Lett. 12(2), 1107 (2012)

    ADS  Google Scholar 

  36. S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Weak antilocalization and conductance fluctuation in a submicrometersized wire of epitaxial Bi2Se3, Phys. Rev. B 85(7), 075440 (2012)

    ADS  Google Scholar 

  37. H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Electrical tunable surface-to-bulk coherent coupling in topological insulator thin films, Phys. Rev. B 84(23), 233101 (2011)

    ADS  Google Scholar 

  38. G. Kresse and J. Hafner, ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)

    ADS  Google Scholar 

  39. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    ADS  Google Scholar 

  40. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  42. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348), the National Natural Science Foundation of China (Grant No. 11874193), and the Shenzhen Fundamental Subject Research Program, China (Grant No. JCYJ20170817110751776). K. D. W. acknowledges support from the National Natural Science Foundation of China (Grant No. 11574128). X. D. acknowledges support from NSF under award DMR-1808491.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Liang, J., Cho, Cw. et al. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys. 15, 33602 (2020). https://doi.org/10.1007/s11467-020-0952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0952-x

Keywords

Navigation