Skip to main content
Log in

Effects of Bismuth Doping on the Properties of CuOx Thin Films

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This paper investigated the influence of deposition parameters such as oxygen content and direct current (DC) power on the characteristics of copper bismuth oxide (CuBiOx) thin films prepared by DC magnetron sputtering. According to the X-ray diffraction (XRD) results, for a fixed DC power of 40 W, only the CuBiOx film deposited with 20% oxygen content has a p-type CuBi2O4 phase, whereas for a fixed oxygen content of 20%, all CuBiOx films deposited at different DC powers show a p-type CuBi2O4 phase, suggesting the presence of optimized oxygen content for depositing p-type CuBiOx films. From the X-ray photoelectron spectroscopy (XPS) depth profile results, it can be confirmed that the CuBiOx films deposited with DC powers of 30, 40, and 50 W at a constant oxygen content of 20% have the compositions of CuBi1.6O4, CuBi1.7O4, and CuBi1.65O4, respectively, which is well supported by the XRD results. In addition, the optical band gaps (1.54–1.9 eV) of CuBiOx films deposited at DC powers of 30, 40 and 50 W at a constant oxygen content of 20% are similar to those reported for CuBi2O4 films prepared by the sol-gel method. In addition, the p-type conductivity of the CuBiOx thin film was confirmed by Hall Effect measurement results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shukor, A.H., Alhattab, H.A., Takano, I.: Electrical and optical properties of copper oxide thin films prepared by DC magnetron sputtering. J. Vac Sci. Technol. B. 38, 012803 (2020). https://doi.org/10.1116/1.5131518

    Article  CAS  Google Scholar 

  2. Nesa, M., Sharmin, M., Bhuiyan, A.H.: Role of Zn dopants on the surface morphology, chemical structure and DC electrical transport properties of nanostructured p-type CuO thin films. Mater. Sci. Semicond. Process. 122, 105479 (2021). https://doi.org/10.1016/j.mssp.2020.105479

    Article  CAS  Google Scholar 

  3. Peng, W., Zhou, Y., Li, J., Liu, Y., Zhang, J., Xiang, G., Zhu, X., Li, R., Wang, H., Zhao, Y.: Annealing temperature induced physical characteristics of CuO films grown by magnetron sputtering. Mater. Sci. Semicond. Process. 131, 105883 (2021). https://doi.org/10.1016/j.mssp.2021.105883

    Article  CAS  Google Scholar 

  4. Farhad, S.F.U., Cherns, D., Smith, J.A., Fox, N.A., Fermín, D.J.: Pulsed laser deposition of single phase n- and p-type Cu2O thin films with low resistivity. Mater. Des. 193, 108848 (2020). https://doi.org/10.1016/j.matdes.2020.108848

    Article  CAS  Google Scholar 

  5. Muñoz-Rojas, D., Jordan, M., Yeoh, C., Marin, A.T., Kursumovic, A., Dunlop, L.A., Iza, D.C., Chen, A., Wang, H., MacManus Driscoll, J.L.: Growth of ∼5 cm2V– 1s– 1 mobility, p-type copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below. AIP Adv. 2, 042179 (2012). https://doi.org/10.1063/1.4771681

    Article  CAS  Google Scholar 

  6. Kim, H., Bae, S., Jeon, D., Ryu, J.: Fully solution-processable Cu2O–BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem. 20, 3732–3742 (2018). https://doi.org/10.1039/C8GC00681D

    Article  CAS  Google Scholar 

  7. Dey, A., Chandrabose, G., Damptey, L.A.O., Erakulan, E.S., Thapa, R., Zhuk, S., Dalapati, G.K., Ramakrishna, S., Braithwaite, N.S.J., Shirzadi, A., Krishnamurthy, S.: Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation. Appl. Surf. Sci. 541, 148571 (2021). https://doi.org/10.1016/j.apsusc.2020.148571

    Article  CAS  Google Scholar 

  8. Minami, T., Tanaka, H., Shimakawa, T., Miyata, J., Sato, H.: High-efficiency oxide heterojunction solar cells using Cu2O sheets. Jpn J. Appl. Phys. 43, L917–L919 (2004). https://doi.org/10.1143/JJAP.43.L917

    Article  CAS  Google Scholar 

  9. Ishio, S., Narisawa, T., Takahashi, S., Kamata, Y., Shibata, S., Hasegawa, T., Yan, Z., Liu, X., Yamane, H., Kondo, Y., Ariake, J.: L10 FePt thin films with [0 0 1] crystalline growth fabricated by SiO2 addition—rapid thermal annealing and dot patterning of the films. J. Magn. Magn. Mater. 324, 295–302 (2012). https://doi.org/10.1016/j.jmmm.2010.12.014

    Article  CAS  Google Scholar 

  10. Wang, X., Xu, X., Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat. Tranf. 13, 474 (1999)

    Article  CAS  Google Scholar 

  11. Martins, R., Nathan, A., Barros, R., Pereira, L., Barquinha, P., Correia, N., Costa, R., Ahnood, A., Ferreira, I., Fortunato, E.: Complementary metal oxide semiconductor technology with and on paper. Adv. Mater. 23, 4491–4496 (2011). https://doi.org/10.1002/adma.20110223

    Article  CAS  Google Scholar 

  12. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012). https://doi.org/10.1002/adma.201103228

    Article  CAS  Google Scholar 

  13. Guo, L., Zhao, M., Zhuang, D., Gong, Q., Tan, H., Cao, M.: Ouyang, L. A study on phase transformation of SnOx thin films prepared by reactive magnetron sputtering. Mater. Sci. Semicond. Process. 46, 35–38 (2016). https://doi.org/10.1016/j.mssp.2015.10.008

    Article  CAS  Google Scholar 

  14. Ju, C., Park, C., Yang, H., Kim, U., Kim, Y.M., Char, K.: High mobility field effect transistor of SnOx on glass using HfOx gate oxide. Curr. Appl. Phys. 16, 300–304 (2016). https://doi.org/10.1016/j.cap.2015.12.015

    Article  Google Scholar 

  15. Lee, J.-H., Choi, Y.-J., Jeong, C.-Y., Jung, D.-K., Ham, S., Kwon, H.-I.: Electrical instability of p-channel SnO thin-film transistors under light illumination. IEEE Electron. Dev. Lett. 37, 295–298 (2016). https://doi.org/10.1109/LED.2016.2516578

    Article  CAS  Google Scholar 

  16. Ahn, J.S., Pode, R., Lee, K.B.: Study of Cu-doped SnO thin films prepared by reactive co-sputtering with facing targets of Sn and Cu. Thin Solid Films. 608, 102–106 (2016). https://doi.org/10.1016/j.tsf.2016.04.024

    Article  CAS  Google Scholar 

  17. Qiang, L., Liu, W., Pei, Y., Wang, G., Yao, R.: Trap states extraction of p-channel SnO thin-film transistors based on percolation and multiple trapping carrier conductions. Solid State Electron. 129, 163–167 (2017). https://doi.org/10.1016/j.sse.2016.11.010

    Article  CAS  Google Scholar 

  18. Azmi, A., Lee, J., Gim, T.J., Choi, R., Jeong, J.K.: Performance improvement of p-channel tin monoxide transistors with a solution-processed zirconium oxide gate dielectric. IEEE Electron. Dev. Lett. 38, 1543–1546 (2017). https://doi.org/10.1109/LED.2017.2758349

    Article  CAS  Google Scholar 

  19. Chen, P.-C., Chiu, Y.-C., Zheng, Z.-W., Cheng, C.-H., Wu, Y.-H.: Influence of plasma fluorination on p-type channel tin-oxide thin film transistors. J. Alloys Compd. 707, 162–166 (2017). https://doi.org/10.1016/j.jallcom.2016.11.294

    Article  CAS  Google Scholar 

  20. Luo, H., Liang, L., Cao, H.: Carrier trapping anisotropy in ambipolar SnO thin-film transistors. Solid State Electron. 129, 88–92 (2017). https://doi.org/10.1016/j.sse.2017.01.001

    Article  CAS  Google Scholar 

  21. Yen, T.J., Chin, A., Gritsenko, V.: Exceedingly high performance top-gate p-type SnO thin film transistor with a nanometer scale channel layer. Nanomater. 11, 92 (2021). https://doi.org/10.3390/nano11010092

    Article  CAS  Google Scholar 

  22. Nyborg, M., Azarov, A., Bergum, K., Monakhov, E.: Deposition and characterization of lithium doped direct current magnetron sputtered Cu2O films. Thin Solid Films. 722, 138573 (2021). https://doi.org/10.1016/j.tsf.2021.138573

    Article  CAS  Google Scholar 

  23. Shi, J., Rubinstein, E.A., Li, W., Zhang, J., Yang, Y., Lee, T.-L., Qin, C., Yan, P., MacManus-Driscoll, J.L., Scanlon, D.O., Zhang, K.H.L.: Modulation of the Bi3+ 6s2 lone pair state in perovskites for high-mobility p‐type oxide semiconductors. Adv. Sci. 9, 2104141 (2022). https://doi.org/10.1002/advs.202104141

    Article  CAS  Google Scholar 

  24. Gao, H., Wang, F., Wang, S., Wang, X., Yi, Z., Yang, H.: Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater. Res. Bull. 115, 140–149 (2019). https://doi.org/10.1016/j.materresbull.2019.03.021

    Article  CAS  Google Scholar 

  25. Roy, D., Samu, G., Hossain, M., Janaky, C., Rajeshwar, K.: On the measured optical bandgap values of inorganic oxide semiconductors for solar fuels generation. Catal. Today. 300, 136–144 (2018). https://doi.org/10.1016/j.cattod.2017.03.016

    Article  CAS  Google Scholar 

  26. Duployer, B., Tenailleau, C., Thimont, Y., Lenormand, P., Barnabé, A., Presmanes, L.: Preparation and study of CuBi2O4 thin films by RF magnetron sputtering. Mater. Res. Bull. 130, 110940 (2020). https://doi.org/10.1016/j.materresbull.2020.110940

    Article  CAS  Google Scholar 

  27. Nan, B., Yu, J., Ma, C., Wang, D., Si, R., Li, L.: Copper oxide clusters modified by bismuth single atoms to catalyze CO oxidation. Appl. Catal. A-Gen. 636, 118578 (2022). https://doi.org/10.1016/j.apcata.2022.118578

    Article  CAS  Google Scholar 

  28. Choi, Y.-H., Kim, D.-H., Hong, S.-H.: Gas sensing properties of p-type CuBi2O4 porous nanoparticulate thin film prepared by solution process based on metal-organic decomposition. Sens. Actuators B. 268, 129–135 (2018). https://doi.org/10.1016/j.snb.2018.04.105

    Article  CAS  Google Scholar 

  29. Puzikova, D., Dergacheva, M., Khussurova, G.: Thin semiconductor films CuBi2O4 for photoelectrochemical solar cells. Mater. Today: Proc. 25, 1–5 (2020). https://doi.org/10.1016/j.matpr.2019.10.050

    Article  CAS  Google Scholar 

  30. Hosen, A., Mian, M.S., Ahmed, S.R.A.: Simulating the performance of a highly efficient CuBi2O4-based thin-film solar cell. SN Appl. Sci. (2021). https://doi.org/10.1007/s42452-021-04554-z

    Article  Google Scholar 

  31. Wang, F., Chemseddine, A., Abdi, F.F., van de Krol, R., Berglund, S.P.: Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films. J. Mater. Chem. A. 5, 12838–12847 (2017). https://doi.org/10.1039/c7ta03009f

    Article  CAS  Google Scholar 

  32. Viezbicke, B.D., Patel, S., Davis, B.E., Birnie III, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700–1710 (2015). https://doi.org/10.1002/pssb.201552007

    Article  CAS  Google Scholar 

  33. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  34. Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  35. Moumen, A., Hartiti, B., Comini, E., El khalidi, Z., Arachchige, H.M.M.M., Fadili, S., Thevenin, P.: Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique. Superlattices Microstruct. 127, 2–10 (2019). https://doi.org/10.1016/j.spmi.2018.06.061

    Article  CAS  Google Scholar 

  36. Yun, E.-J., Jung, J.W., Han, Y.H., Kim, M.-W., Lee, B.C.: Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates. J. Korean Phys. Soc. 56, 356–361 (2010). https://doi.org/10.3938/jkps.56.356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1D1A3A0310351513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Jung Yun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Yun, EJ. Effects of Bismuth Doping on the Properties of CuOx Thin Films. Electron. Mater. Lett. 19, 398–404 (2023). https://doi.org/10.1007/s13391-023-00408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00408-5

Keywords

Navigation