Skip to main content
Log in

Preparation of sputter-deposited CuOx thin film with p-type conductivity and application as thin film transistor

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper explored the effect of deposition conditions on the characteristics of copper oxide (CuOx) thin films prepared by direct current (DC) magnetron sputtering. X-ray diffraction exhibited that CuO with n-type conductivity was the main composition regardless of the DC magnetron sputtering power whereas the phase transition from n-type CuO to p-type Cu2O was observed with decreasing the oxygen pressure (OP) from 40 to 20%. The optical band gap ranges of 1.6–1.9 eV, which are characteristic of n-type CuO, were determined for samples prepared with OPs of 30–40% while the optical band gap of 2.3 eV, which is characteristic of p-type Cu2O, was measured for samples prepared with an OP of 20%. In addition, only Cu+ X-ray photoelectron spectroscopy (XPS) peak at the ~932.6 eV position exists in the films deposited with an OP of 20%, whereas only Cu2+ XPS peaks at ~934.2 eV and in the range of 940–945 eV are observed in the films deposited with an OP of 40%. Furthermore, as a result of XPS depth profile analysis, it was confirmed that the composition ratio of the sample prepared at an OP of 20% was Cu2O, whereas the composition ratio of the sample prepared at an OP of 40% was CuO. These suggest that the CuOx thin films could be constantly converted from n-type CuO to p-type Cu2O by decreasing the oxygen partial pressure. Thin film transistors with Cu2O deposited at 20% OP revealed p-type characteristics such as onset voltage (VON) of −3 V, saturated hole mobility of 8 cm2/Vs at VGS = −28 V, subthreshold swing of 0.86 V/decade at VGSVON = −0.5 V, and on/off ratio of 1.14 × 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.F.U. Farhad, D. Cherns, J.A. Smith, N.A. Fox, D.J. Fermín, Mater. Des. 193, 108848 (2020)

    Article  Google Scholar 

  2. D. Muñoz-Rojas, M. Jordan, C. Yeoh, A.T. Marin, A. Kursumovic et al., AIP Adv. 2, 042179 (2012)

    Article  ADS  Google Scholar 

  3. A.H. Shukor, H.A. Alhattab, I. Takano, J. Vac. Sci. Technol. B 38, 012803 (2020)

    Article  Google Scholar 

  4. T. Minami, H. Tanaka, T. Shimakawa, J. Miyata, H. Sato, Jpn. J. Appl. Phys. 43, 917 (2004)

    Article  ADS  Google Scholar 

  5. H. Kim, S. Bae, D. Jeon, J. Ryu, Green Chem. 20, 3732 (2018)

    Article  Google Scholar 

  6. A. Dey, G. Chandrabose, L.A.O. Damptey, E.S. Erakulan, R. Thapa et al., Appl. Surf. Sci. 541, 148571 (2021)

    Article  Google Scholar 

  7. M. Nesa, M. Sharmin, A.H. Bhuiyan, Mater. Sci. Semicond. Process. 122, 105479 (2021)

    Article  Google Scholar 

  8. X. Wang, X. Xu, J. Thermophys. Heat Tran. 13, 474 (1999)

    Article  Google Scholar 

  9. S. Ishio, T. Narisawa, S. Takahashi, Y. Kamata, S. Shibata et al., J. Magn. Magn. Mater. 324, 295 (2012)

    Article  ADS  Google Scholar 

  10. W. Peng, Y. Zhou, J. Li, Y. Liu, J. Zhang et al., Mater. Sci. Semicond. Process. 131, 105883 (2021)

    Article  Google Scholar 

  11. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)

    Article  Google Scholar 

  12. L. Guo, M. Zhao, D. Zhuang, Q. Gong, H. Tan et al., Mater. Sci. Semicond. Process. 46, 35 (2016)

    Article  Google Scholar 

  13. L. Qiang, W. Liu, Y. Pei, G. Wang, R. Yao, Solid State Electron. 129, 163 (2017)

    Article  ADS  Google Scholar 

  14. R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha et al., Adv. Mater. 23, 4491 (2011)

    Article  Google Scholar 

  15. C. Ju, C. Park, H. Yang, U. Kim, Y.M. Kim et al., Curr. Appl. Phys. 16, 300 (2016)

    Article  ADS  Google Scholar 

  16. J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, D.-K. Jung, S. Ham et al., IEEE Electron Dev. Lett. 37, 300 (2016)

    ADS  Google Scholar 

  17. A. Azmi, J. Lee, T.J. Gim, R. Choi, J.K. Jeong, IEEE Electron Dev. Lett. 38, 1543 (2017)

    Article  ADS  Google Scholar 

  18. P.-C. Chen, Y.-C. Chiu, Z.-W. Zheng, C.-H. Cheng, Y.-H. Wu, J. Alloys Compd. 707, 162 (2017)

    Article  Google Scholar 

  19. H. Luo, L. Liang, H. Cao, Solid State Electron. 129, 88 (2017)

    Article  ADS  Google Scholar 

  20. J.S. Ahn, R. Pode, K.B. Lee, Thin Solid Films 608, 102 (2016)

    Article  ADS  Google Scholar 

  21. T.J. Yen, A. Chin, V. Gritsenko, Nanomater. 11, 92 (2021)

    Article  Google Scholar 

  22. L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du et al., J. Cryst. Growth 260, 130 (2004)

    Article  ADS  Google Scholar 

  23. A. Parretta, M.K. Jayaraj, A.D. Nocera, S. Loreti, L. Quercia et al., Phys. Status Solidi A 155, 399 (1996)

    Article  ADS  Google Scholar 

  24. S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta et al., Vacuum 57, 377 (2000)

    Article  ADS  Google Scholar 

  25. C.A.N. Fernando, S.K. Wetthasinghe, Sol. Energy Mater. Sol. Cells 63, 299 (2000)

    Article  Google Scholar 

  26. I.L. Yubinetsky, S. Thevulhasan, D.E. Mc Cready, D.R. Baer, J. Appl. Phys. 94, 7926 (2003)

    Article  ADS  Google Scholar 

  27. C. Vitelaru, I. Pana, A.E. Kiss, N.C. Zoita, A. Vladescu et al., J. Optoelectron. Adv. Mater. 21, 717 (2019)

    Google Scholar 

  28. H. Siddiqui, M.R. Parra, M.S. Qureshi, M.M. Malik, F.Z. Haque, J. Mater. Sci. 53, 8826 (2018)

    Article  ADS  Google Scholar 

  29. L. Wang, R. Zhang, T. Zhou, Z. Lou, J. Deng et al., Sens. Actuators B Chem. 239, 211 (2017)

    Article  Google Scholar 

  30. W.-S. Chiang, J.-Q. Huang, K.-C. Tso, P.-S. Hung, P.-C. Chen et al., Thin Solid Films 660, 585 (2018)

    Article  ADS  Google Scholar 

  31. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III., Phys. Status Solidi B 252, 1700 (2015)

    Article  ADS  Google Scholar 

  32. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  33. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  ADS  Google Scholar 

  34. A. Moumen, B. Hartiti, E. Comini, Z. El khalidi, H.M.M.M. Arachchige et al., Superlattices Microstruct. 127, 2 (2019)

    Article  ADS  Google Scholar 

  35. E.-J. Yun, J.W. Jung, Y.H. Han, M.-W. Kim, B.C. Lee, J. Korean Phys. Soc. 56, 356 (2010)

    Article  ADS  Google Scholar 

  36. M. Nyborg, A. Azarov, K. Bergum, E. Monakhov, Thin Solid Films 722, 138573 (2021)

    Article  ADS  Google Scholar 

  37. M. Ajili, N.T. Kamoun, Optik 229, 166222 (2021)

    Article  ADS  Google Scholar 

  38. J.J.D. Leon, D.M. Fryauf, R.D. Cormia, M.-X.M. Zhang, K. Samuels et al., ACS Appl. Mater. Interfaces 8, 22337 (2016)

    Article  Google Scholar 

  39. M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, P. Heremans, Appl. Phys. Lett. 91, 103508 (2007)

    Article  ADS  Google Scholar 

  40. K.M. Yu, J.T. Yuh, S.H.K. Park, M.K. Ryu, E.J. Yun, B.S. Bae, Jpn. J. Appl. Phys. 52, 10MA12 (2013)

    Article  Google Scholar 

  41. T. Kamiya, H. Hosono, NPG Asia Mater. 2, 15 (2010)

    Article  Google Scholar 

  42. C.G. Lee, B. Cobb, A. Dodabalapur, Appl. Phys. Lett. 97, 203505 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1D1A3A0310351513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Jung Yun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Yun, EJ. Preparation of sputter-deposited CuOx thin film with p-type conductivity and application as thin film transistor. J. Korean Phys. Soc. 81, 867–875 (2022). https://doi.org/10.1007/s40042-022-00596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00596-7

Keywords

Navigation