Skip to main content
Log in

Selective Area Epitaxy of Complex Oxide Heterostructures on Si by Oxide Hard Mask Lift-Off

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

A Correction to this article was published on 30 December 2022

This article has been updated

Abstract

Epitaxial complex oxide heterostructures on Si are an excellent platform for the realization of multifunctional electronic devices to exploit the unique functionalities of the oxides that Si does not possess. It is often necessary to make patterns of epitaxial films on selected areas of Si. Here, a path towards the selective area epitaxial growth of complex oxide heterostructures on Si using a hard mask lift-off technique is reported. A water-soluble oxide (Sr3Al2O6) is used as a lift-off hard mask that can survive the high temperature (~ 750 °C) and oxidizing environments for epitaxial oxide growth and be selectively etched away subsequently using deionized water. It is found that the epitaxial growth of yttria-stabilized zirconia (YSZ) buffer layers on Si is very sensitive to organic residues formed during photolithography. Island patterns of epitaxial (La, Sr)MnO3/CeO2/YSZ heterostructures are successfully fabricated on Si through the use of oxygen plasma treatment to remove residues. A simple and low-cost method to pattern complex oxide single crystals integrated on Si for the realization of multifunctional oxide-integrated electronics is provided in this study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Baek, S.H., Eom, C.B.: Epitaxial integration of perovskite-based multifunctional oxides on silicon. Acta Mater. 61, 2734–2750 (2013). https://doi.org/10.1016/j.actamat.2012.09.073

    Article  CAS  Google Scholar 

  2. Spreitzer, M., Klement, D., Parkelj, P.T., Trstenjak, U., Jovanović, Z., Nguyen, M.D., Yuan, H., Ten ElshofHouwman, J.E.E., Koster, G., Rijnders, G., Fompeyrine, J., Kornblum, L., Fenning, D.P., Liang, Y., Tong, W.Y., Ghosez, P.: Epitaxial ferroelectric oxides on silicon with perspectives for future device applications. APL Mater. 9, 040701 (2021). https://doi.org/10.1063/5.0039161

    Article  CAS  Google Scholar 

  3. Mazet, L., Yang, S.M., Kalinin, S.V., Schamm-Chardon, S., Dubourdieu, C.: A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015). https://doi.org/10.1088/1468-6996/16/3/036005

    Article  CAS  Google Scholar 

  4. Reiner, J.W., Kolpak, A.M., Segal, Y., Garrity, K.F., Ismail-Beigi, S., Ahn, C.H., Walker, F.J.: Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010). https://doi.org/10.1002/adma.200904306

    Article  CAS  Google Scholar 

  5. Kumah, D.P., Ngai, J.H., Kornblum, L.: Epitaxial oxides on semiconductors: from fundamentals to new devices. Adv. Funct. Mater. 30, 1901597 (2020). https://doi.org/10.1002/adfm.201901597

    Article  CAS  Google Scholar 

  6. Catalano, S., Gibert, M., Fowlie, J., Iniguez, J., Triscone, J.M., Kreisel, J.: Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018). https://doi.org/10.1088/1361-6633/aaa37a

    Article  CAS  Google Scholar 

  7. Ngai, J.H., Walker, F.J., Ahn, C.H.: Correlated oxide physics and electronics. Annu. Rev. Mater. Res. 44, 1–17 (2014). https://doi.org/10.1146/annurev-matsci-070813-113248

    Article  CAS  Google Scholar 

  8. Baek, S.H., Jang, H.W., Folkman, C.M., Li, Y.L., Winchester, B., Zhang, J.X., He, Q., Chu, Y.H., Nelson, C.T., Rzchowski, M.S., Pan, X.Q., Ramesh, R., Chen, L.Q., Eom, C.B.: Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010). https://doi.org/10.1038/NMAT2703

    Article  CAS  Google Scholar 

  9. Jin, W., Wang, Z., Huang, H., Hu, X., He, Y., Li, M., Li, L., Gao, Y., Hu, Y., Gu, H.: High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr, Ti)O3 nanorod arrays. RSC Adv. 8, 7422–7427 (2018). https://doi.org/10.1039/C7RA13506H

    Article  CAS  Google Scholar 

  10. Keech, R., Ye, L., Bosse, J.L., Esteves, G., Guerrier, J., Jones, J.L., Kuroda, M.A., Huey, B.D., Trolier-McKinstry, S.: Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate-lead titanate thin films. Adv. Funct. Mater. 27, 1605014 (2017). https://doi.org/10.1002/adfm.201605014

    Article  CAS  Google Scholar 

  11. Yang, Y., Tian, H., Wang, Y.F., Shu, Y., Zhou, C.J., Sun, H., Zhang, C.H., Chen, H., Ren, T.L.: An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging. Sens. 13, 9624–9634 (2013). https://doi.org/10.3390/s130809624

    Article  CAS  Google Scholar 

  12. Chen, Y.Q., Li, Y.X., Chen, Y., Ju, Z.Y., Tao, L.Q., Pang, Y., Yang, Y., Ren, T.L.: Large-scale and high-density pMUT array based on isolated sol-gel PZT membranes for fingerprint imaging. J. Electrochem. Soc. 164, B377 (2017). https://doi.org/10.1149/2.0891707jes

    Article  CAS  Google Scholar 

  13. Zhu, C., Lee, H., Ye, J., Xu, G., Luo, L., Zhu, C., Lee, H., Ye, J.: In: Proceedings of 2014 15th International Conference on Electronic Packaging Technology, IEEE, Chengdu, pp. 606–609 (2014). https://doi.org/10.1109/ICEPT.2014.6922729

  14. Abdelnaby, A.H., Potirniche, G.P., Barlow, F., Elshabini, A., Groothuis, S., Parker, R.: Numerical simulation of silicon wafer warpage due to thin film residual stresses. In: Proceedings of 2013 IEEE Workshop on Microelectronics and Electron Devices (WMED), IEEE, Boise, ID, pp. 9–12 (2013). https://doi.org/10.1109/WMED.2013.6544506

  15. Cheng, G., Xu, G., Gai, W., Luo, L.: Influence of observed anelasticity of Cu on the wafer warpage evolution during thermal process. In: Proceedings of 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, Shanghai, pp. 1119–1122 (2018). https://doi.org/10.1109/ICEPT.2018.8480777

  16. Karthik, J., Damodaran, A.R., Martin, L.W.: Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using MgO mask. Adv. Mater. 24, 1610–1615 (2012). https://doi.org/10.1002/adma.201104697

    Article  CAS  Google Scholar 

  17. Ponath, P., Posadas, A., Schmidt, M., Kelleher, A.M., White, M., O’Connell, D., Hurley, P.K., Duffy, R.: Monolithic integration of patterned BaTiO3 thin films on Ge wafers. J. Vac. Sci. Technol. B. 36, 031206 (2018). https://doi.org/10.1116/1.5026109

    Article  CAS  Google Scholar 

  18. Park, C.W., Yu, H.Y., Pi, U.H., Choi, S.Y.: Fabrication of poly-Si/Au nano-gaps using atomic-layer-deposited Al2O3 as a sacrificial layer. Nanotechnology 16, 361 (2005). https://doi.org/10.1088/0957-4484/16/4/005

    Article  CAS  Google Scholar 

  19. Wallin, E., Selinder, T.I., Elfwing, M., Helmersson, U.: Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering. EPL 82(3), 36002 (2008). https://doi.org/10.1209/0295-5075/82/36002

    Article  CAS  Google Scholar 

  20. Cho, J.H., Boampong, A. A., Kim, M.H.: Selective Etching of Dielectric Buffer Layer for Organic Ferroelectric Memory Cell. Electron. Mater. Lett. 17, 406-413(2021)

  21. Lu, D., Baek, D.J., Hong, S.S., Kourkoutis, L.F., Hikita, Y., Hwang, H.Y.: Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15(12), 1255–1260 (2016). https://doi.org/10.1038/nmat4749

    Article  CAS  Google Scholar 

  22. Sun, J., Bian, J., Liang, H., Zhao, J., Hu, L., Zhao, Z., Liu, W., Du, G.: Realization of controllable etching for ZnO film by NH4Cl aqueous solution and its influence on optical and electrical properties. Appl. Surf. Sci. 253(11), 5161–5165 (2007). https://doi.org/10.1016/j.apsusc.2006.11.036

    Article  CAS  Google Scholar 

  23. Stemmer, S.: Thermodynamic considerations in the stability of binary oxides for alternative gate dielectrics in complementary metal-oxide-semiconductors. J. Vac. Sci. Technol. B. 22, 791–800 (2004). https://doi.org/10.1116/1.1688357

    Article  CAS  Google Scholar 

  24. Fork, D.K., Fenner, D.B., Connell, G.A.N., Phillips, J.M., Geballe, T.H.: Epitaxial yttria-stabilized zirconia on hydrogen-terminated Si by pulsed laser deposition. Appl. Phys. Lett. 57, 1137–1139 (1990). https://doi.org/10.1063/1.104220

    Article  CAS  Google Scholar 

  25. Sánchez, F., Ferrater, C., Alcobé, X., Bassas, J., Garcı́a-Cuenca, M.V., Varela, M.: Pulsed laser deposition of epitaxial LaNiO3 thin films on buffered Si(100). Thin Solid Films 384, 200–205 (2001). https://doi.org/10.1016/S0040-6090(00)01876-9

    Article  Google Scholar 

  26. Kaneko, S., Akiyama, K., Shimizu, Y., Ito, T., Yasaka, S., Mitsuhashi, M., Ohya, S., Saito, K., Watanabe, T., Okamoto, S.: Effect of buffer layer on epitaxial growth of YSZ deposited on Si substrate by slower Q-switched 266 nm YAG Laser. Jpn. J. Appl. Phys. 43, 1532 (2004). https://doi.org/10.1143/JJAP.43.1532

    Article  CAS  Google Scholar 

  27. Hata, T., Sasaki, K., Ichikawa, Y., Sasaki, K.: Yttria-stabilized zirconia (YSZ) heteroepitaxially grown on Si substrates by reactive sputtering. Vacuum 59, 381–389 (2000). https://doi.org/10.1016/S0042-207X(00)00291-8

    Article  CAS  Google Scholar 

  28. Khoa, T.D., Horii, S., Horita, S.: High deposition rate of epitaxial (100) Iridium film on (100)YSZ/(100)Si substrate by RF sputtering deposition. Thin Solid Films 419, 88–94 (2002). https://doi.org/10.1016/S0040-6090(02)00761-7

    Article  CAS  Google Scholar 

  29. Lubig, A., Buchal, C., Guggi, D., Jia, C., Stritzker, B.: Epitaxial growth of monoclinic and cubic ZrO2 on Si(100) without prior removal of the native SiO2. Thin Solid Films 217, 125–128 (1992). https://doi.org/10.1016/0040-6090(92)90617-K

    Article  CAS  Google Scholar 

  30. Nukala, P., Antoja-Lleonart, J., Wei, Y., Yedra, L., Dkhil, B., Noheda, B.: Direct epitaxial growth of polar (1–x)HfO2-(x)ZrO2 ultrathin films on silicon. ACS Appl. Electron. Mater. 1, 2585–2593 (2019). https://doi.org/10.1021/acsaelm.9b00585

    Article  CAS  Google Scholar 

  31. Dubbink, D., Koster, G., Rijnders, G.: Growth mechanism of epitaxial YSZ on Si by pulsed laser deposition. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-24025-7

    Article  CAS  Google Scholar 

  32. Ishigaki, H., Yamada, T., Wakiya, N., Shinozaki, K., Mizutani, N.: Effect of the thickness of SiO2 under layer on the initial stage of epitaxial growth process of yttria-stabilized zirconia (YSZ) thin film deposited on Si (001) substrate. J. Ceram. Soc. Jpn. 109, 766–770 (2001). https://doi.org/10.8109/jcersj.109.1273_766

    Article  CAS  Google Scholar 

  33. Zhang, X., Yang, C., Zhang, Y., Hu, A., Li, M., Gao, L., Ling, H., Hang, T.: Sub-surface Damage of Ultra-Thin Monocrystalline Silicon Wafer Induced by Dry Polishing. Electron. Mater. Lett. 16, 355-362(2020)

  34. Kim, S.I., Choi, H.J., Lee, G., Roh, C.J., Jung, I., Jung, S.Y., Ning, R., Won, S.O., Chang, H.J., Lee, J.S., Kim, S.K., Kim, J.S., Kang, C.Y., Choi, J.W., Baek, S.H.: 3D architectures of single-crystalline complex oxides. Mater. Horizons 7, 1552–1557 (2020). https://doi.org/10.1039/D0MH00292E

    Article  CAS  Google Scholar 

  35. Kim, T.M., Sim, H.S., Jeon, J.W.: Development of a Vaporizer for Gradual Vaporization Control of precursor materials in the CVD process. Electron. Mater. Lett. 17, 250-259(2021)

  36. Byun, D-W., Lee, Y-J., Oh, J.M., Schweitz, M. A., Koo, S-M.: Morphological and electrical properties of β-Ga2O3/4H-SiC heterojunction diodes. Electron. Mater. Lett. 17, 479-484(2021)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2020M3D1A2101933) and the Yonsei-KIST Convergence Program. H.J.C and H.C was supported by a National Research Council of Science & Technology (NST) Grant awarded by the Korea government (MSIT) (No. CAP-18-04-KRISS).

Author information

Authors and Affiliations

Author notes

  1. The original online version of this article was revised due to some of the references were missing and the missed references have been included.

    Authors

    Corresponding author

    Correspondence to Seung-Hyub Baek.

    Ethics declarations

    Conflict of interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Ning, R., Jung, S.Y., Choi, H. et al. Selective Area Epitaxy of Complex Oxide Heterostructures on Si by Oxide Hard Mask Lift-Off. Electron. Mater. Lett. 19, 192–199 (2023). https://doi.org/10.1007/s13391-022-00386-0

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s13391-022-00386-0

    Keywords

    Navigation